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Abstract

Street networks may be planned according to clear organizing principles or they
may evolve organically through accretion, but their configurations and orientations
help define a city’s spatial logic and order. Measures of entropy reveal a city’s streets’
order and disorder. Past studies have explored individual cases of orientation and
entropy, but little is known about broader patterns and trends worldwide. This study
examines street network orientation, configuration, and entropy in 100 cities around
the world using OpenStreetMap data and OSMnx. It measures the entropy of street
bearings in weighted and unweighted network models, along with each city’s typical
street segment length, average circuity, average node degree, and the network’s
proportions of four-way intersections and dead-ends. It also develops a new
indicator of orientation-order that quantifies how a city’s street network follows the
geometric ordering logic of a single grid. A cluster analysis is performed to explore
similarities and differences among these study sites in multiple dimensions.
Significant statistical relationships exist between city orientation-order and other
indicators of spatial order, including street circuity and measures of connectedness.
On average, US/Canadian study sites are far more grid-like than those elsewhere,
exhibiting less entropy and circuity. These indicators, taken in concert, help reveal
the extent and nuance of the grid. These methods demonstrate automatic, scalable,
reproducible tools to empirically measure and visualize city spatial order, illustrating
complex urban transportation system patterns and configurations around the world.

Introduction
Spatial networks such as streets, paths, and transit lines organize the human dynamics of

complex urban systems. They shape travel behavior, location decisions, and the texture of

the urban fabric (Jacobs 1995; Levinson and El-Geneidy 2009; Parthasarathi et al. 2015).

Accordingly, researchers have recently devoted much attention to street network patterns,

performance, complexity, and configuration (Barthelemy et al. 2013; Batty 2005a; Boeing

2018a; Buhl et al. 2006; Chan et al. 2011; Ducruet and Beauguitte 2014; Jiang et al. 2014;

Jiang and Claramunt 2004; Marshall 2004; Masucci et al. 2013; Nilsson and Gil 2019; Tsio-

tas and Polyzos 2018; Wang 2015). In these spatial networks, entropy has deep theoretical

connections with complexity (Batty 2005b; Batty et al. 2014). One research stream has ex-

plored the nature of entropy and order in urban street networks, seeking to quantify pat-

terns of spatial order and disorder in urban circulation systems (Gudmundsson and

Mohajeri 2013; Li et al. 2018; Mohajeri et al. 2013a, 2013b; Mohajeri and Gudmundsson

2012, 2014; Yeh and Li 2001).
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Theories of urban order span sociological frameworks of physical-social dis-

order (e.g., “broken windows” theory), to public health goals of opening-up and

sanitizing pathogenic urban spaces, to city planners’ pursuit of functional differ-

entiation and regulation (Boyer 1983; Hatuka and Forsyth 2005; Mele 2017;

O’Brien et al. 2019; Park and Burgess 1925; Xu 2008). This study considers the

spatial logic and geometric ordering that arise through street network orientation.

A city’s development eras, design paradigms, underlying terrain, culture, and local

economic conditions influence the pattern, topology, and grain of its street net-

works (Jackson 1985; Kostof 1991). These networks in turn structure the human

interactions and transportation processes that run along them, forming an

important pillar of city planners’ quest for spatial order (Rose-Redwood and

Bigon 2018). In particular, network orientation and geometry have played an out-

sized role in urban planning since its earliest days (Smith 2007).

Measuring these network patterns can help researchers, planners, and community

members understand local histories of urban design, transportation planning, and

morphology; evaluate existing transportation system patterns and configurations; and

explore new infrastructure proposals and alternatives. It also furthers the science of cit-

ies by providing a better understanding of urban patterns and how they correspond to

evolutionary mechanisms, planning, and design. However, due to traditional data gath-

ering challenges, this research literature has necessarily relied on small samples, limited

geographies, and abstract indicators. Past studies have typically explored circuity and

entropy in individual or paired case studies—less is known about broader cross-

sectional trends worldwide. How do street network configurations organize and order

urban space in cities around the world?

This paper addresses this gap by empirically modeling and measuring order and

configuration in 100 city street networks around the world, comprising over 4.8

million nodes and 3.3 million edges. It measures street network orientation

entropy, circuity, connectedness, and grain. It also develops a straightforward new

indicator, the orientation-order φ, to quantify the extent to which a street network

follows the spatial ordering logic of a single grid. It finds significant statistical rela-

tionships between city orientation and other indicators of spatial order (including

street circuity and connectedness). The most common orientation worldwide, even

among cities lacking a strong grid, tends toward north-south-east-west. It also finds

that American cities tend to be far more grid-like and less circuitous than cities

elsewhere. Considered jointly, this collection of indicators helps reveal the extent

and nuance of the grid around the world.

Background
Street network planning

The orthogonal grid, the most common planned street pattern, is often traced back to

Hippodamus of Miletus (Mazza 2009; Paden 2001)—whom Aristotle labeled the father of

city planning for his orthogonal design of Piraeus in ancient Greece—but archaeologists

have found vestiges in earlier settlements around the world (Burns 1976; Stanislawski 1946).

Mohenjo-Daro in the Indus Valley, dating to 2500 BCE, featured a north-south-east-west

orthogonal grid (McIntosh 2007). Ancient Chinese urban design organized capital cities
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around gridded patterns codified in the Kao Gong Ji, a scientific text from c. 500 BCE

(Elman and Kern 2009). Teotihuacan featured an offset grid, dating to 100 BCE, that aligned

with the Valley of Mexico’s zenith sunrise (Peterson and Chiu 1987; Sparavigna 2017). The

Roman Empire used standardized street grids to efficiently lay out new towns and colonies

during rapid imperial expansion (Kaiser 2011). Many medieval towns were even planned

around approximate, if distorted, grids possibly to maximize sun exposure on east-west

streets during winter market days (Lilley 2001). In 1573, King Phillip II of Spain issued the

Law of the Indies, systematizing how colonists sited new settlements and designed rectilin-

ear gridded street networks around central plazas (Low 2009; Rodriguez 2005). In the US,

many east coast cities planned their expansions around street grids, including Philadelphia

in 1682, Savannah in 1733, Washington in 1791, and New York in 1811 (Jackson 1985;

Sennett 1990). The subsequent US Homestead Act sweepingly organized the American in-

terior according to the spatial logic of the gridiron (Boeing 2018b).

In the context of urban form, the concept of “spatial order” is fuzzy. Street networks

that deviate from griddedness inherently possess different spatial logics and ordering

principles (Karimi 1997; Southworth and Ben-Joseph 1995, 2004). Cities planned with-

out a grid—as well as unplanned cities that grew through accretion—may lack clearly

defined orientation order, but can still be well-structured in terms of complex human

dynamics and land use (Hanson 1989). Specific visual/geometric order should not be

confused for functional/social order (Roy 2005; Salingaros 1998; Smith 2007). Different

design logics support different transportation technologies and appeal to different cul-

tures and eras (Jackson 1985).

The grid has been used to express political power, promote military rule, improve ca-

dastral legibility, foster egalitarianism, and encourage land speculation and development

(Ellickson 2013; Groth 1981; Low 2009; Martin 2000; Mazza 2009; Rose-Redwood

2011; Sennett 1990). Many cities spatially juxtapose planned and unplanned districts or

non-binarily intermingle top-down design with bottom-up self-organized complexity.

Old cores may comprise organic patterns adjacent to later gridirons, in turn adjacent to

later winding suburbs. Even previously highly-ordered urban cores can grow in entropy

as later generations carve shortcuts through blocks, reorganize space through infill or

consolidation, and adapt to shifting points of interest—all of which occurred in

medieval Rome and Barcelona, for instance (Kostof 1991).

Street network modeling

Street networks are typically modeled as graphs where nodes represent intersec-

tions and dead-ends, and edges represent the street segments that link them

(Barthelemy and Flammini 2008; Cardillo et al. 2006; Lin and Ban 2013; Marshall

et al. 2018; Porta et al. 2006). These edges are spatially embedded and have both a

length and a compass bearing (Barthelemy 2011). The present study models urban

street networks as undirected nonplanar multigraphs with possible self-loops. While

directed graphs most-faithfully represent constraints on flows (such as vehicular

traffic on a one-way street), undirected graphs better model urban form by

corresponding 1:1 with street segments (i.e., the linear sides of city blocks). While

many street networks are approximately planar (having relatively few overpasses or

underpasses), nonplanar graphs provide more accurate models by accommodating
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those bridges and tunnels that do often exist (Boeing 2018c; Eppstein and

Goodrich 2008).

The data to study these networks typically come from shapefiles of digitized streets. In

the US, the Census Bureau provides TIGER/Line shapefiles of roads nationwide. In other

countries, individual municipal, state, or federal agencies may provide similar data, how-

ever, digitization standards and data availability vary. Accordingly, cross-sectional research

of street network orientation and entropy has tended to be limited to individual geograph-

ical regions or examine small samples. However, today, OpenStreetMap presents a new

alternative data source. OpenStreetMap is a collaborative worldwide mapping project that

includes streets, buildings, amenities, and other spatial features. Although its data quality

varies somewhat between countries, in general its streets data are high quality, especially

in cities (Barrington-Leigh and Millard-Ball 2017; Barron et al. 2014; Zielstra et al. 2013).

This data source offers the opportunity to conduct cross-sectional research into street

network form and configuration around the world.

Recently, scholars have studied street network order and disorder through circu-

ity and orientation entropy. The former measures street curvature and how this re-

lates to other urban patterns and processes (Boeing 2019; Giacomin and Levinson

2015; Levinson and El-Geneidy 2009). The latter quantifies and visualizes the en-

tropy of street orientations to assess how ordered they are (Courtat et al. 2011;

Gudmundsson and Mohajeri 2013; Mohajeri et al. 2013a, 2013b; Mohajeri and

Gudmundsson 2012, 2014), as entropy quantifies the fundamentally related con-

cepts of disorder, uncertainty, and dispersion. Louf and Barthelemy (2014) explore

city block geometries around the world as a function of block size and form factor,

clustering them to identify differences between US and European cities. However,

less is known about cross-sectional trends in the spatial orientation and ordering

of street networks worldwide. This study builds on this prior research into circuity,

order, and entropy by drawing on OpenStreetMap data to examine cities around

the world and explore their patterns and relationships.

Methods
Data

To better understand urban spatial order and city street network entropy, we analyze 100

large cities across North America, South America, Europe, Africa, Asia, and Oceania. Our

sampling strategy emulates Louf and Barthelemy’s (2014) to select cities through a balance

of high population, regional significance, and some stratification to ensure geographical

diversity within regions. Accordingly, this sample comprises a broad cross-section of dif-

ferent histories, cultures, development eras, and design paradigms. Of course, no single

consistent definition of “city” or its spatial jurisdiction exists worldwide as these vary be-

tween countries for historical and political reasons. We aim for consistency by trying to

use each study site’s closest approximation of a “municipality” for the city limits. The lone

exception is Manhattan, where we focus on one borough’s famous grid instead of the

amalgam of boroughs that compose New York City.

Once these study sites are defined, we use the OSMnx software to download the

street network within each city boundary and then calculate several indicators.

OSMnx is a free, open-source, Python-based toolkit to automatically download
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spatial data (including municipal boundaries and streets) from OpenStreetMap and

construct graph-theoretic objects for network analysis (Boeing 2017).

Analysis

For each city, we calculate the street network’s edges’ individual compass bearings with

OSMnx using two different methods. The first method simplifies the topology of each

graph such that nodes exist only at intersections and dead-ends; edges thus represent

street segments (possibly curving, as full spatial geometry is retained) between them

(ibid.). In this method, the bearing of edge euv equals the compass heading from u to v

and its reciprocal (e.g., if the bearing from u to v is 90° then we additionally add a bear-

ing of 270° since the one-dimensional street centerline points in both directions). This

captures the orientation of street segments but ignores the nuances of mid-block

curvature. To address this, the second method does not simplify the topology: edges

represent OpenStreetMap’s raw straight-line street segments, either between intersec-

tions or in chunks approximating curving streets. This method weights each edge’s

bearing by length to adjust for extremely short edges in these curve-approximations. In

both methods, self-looping edges have undefined bearings, which are ignored.

Once we have calculated all of the bearings (and their reciprocals) for all the edges in a

city, we divide them into 36 equal-sized bins (i.e., each bin represents 10°). To avoid ex-

treme bin-edge effects around common values like 0° and 90°, we shift each bin by − 5° so

that these values sit at the centers of their bins rather than at their edges. This allows simi-

lar common bearings such as 359.9° and 0.1° to fall in the same bin as each other. Once

the bearings are binned, we calculate the Shannon entropy, Η, of the city’s orientations’

distribution (Shannon 1948). For each city’s graph, we first calculate the entropy of the

unweighted/simplified street orientations, Ηo, as:

Ηo ¼ −
Xn

i¼1
P oið Þ logeP oið Þ ð1Þ

where n represents the total number of bins, i indexes the bins, and P(oi) represents

the proportion of orientations that fall in the ith bin. We similarly calculate the entropy

of the weighted/unsimplified street orientations, Ηw, as:

Ηw ¼ −
Xn

i¼1
P wið Þ loge P wið Þ ð2Þ

where n represents the total number of bins, i indexes the bins, and P(wi) represents

the proportion of weighted orientations that fall in the ith bin. While Ηw is biased by

the city’s shape (due to length-weighting), Ηo is not.

The natural logarithm means the value of Η is in dimensionless units called

“nats,” or the natural unit of information. The maximum entropy, Ηmax, that any

city could have equals the logarithm of the number of bins: 3.584 nats. This rep-

resents the maximum entropy distribution, a perfectly uniform distribution of

street bearings across all bins. If all the bearings fell into a single bin, entropy

would be minimized and equal 0. However, given the undirected graph, the min-

imal theoretical entropy a street network could have (e.g., if all of its streets ran

only north-south, thus falling evenly into two bins) would be 0.693 nats. But

given the nature of the real world, a more plausible minimum would instead be

an idealized city grid with all streets in four equal proportions (e.g., north-south-

Boeing Applied Network Science            (2019) 4:67 Page 5 of 19



east-west). This perfect grid entropy, Ηg, would equal 1.386 nats. Therefore, we

can calculate a normalized measure of orientation-order, φ, to indicate where a

city stands on a linear spectrum from completely disordered/uniform to perfectly

ordered/grid-like as:

φ ¼ 1−
Ηo−Η g

Ηmax−Η g

� �2

ð3Þ

Thus, a φ value of 0 indicates low order (i.e., perfect disorder and maximum entropy

with a uniform distribution of streets in every direction) and a φ value of 1 indicates

high order (i.e., a single perfectly-ordered idealized four-way grid and minimal possible

entropy). Note that the value is squared to linearize its already normalized scale be-

tween 0 and 1, allowing us to interpret it as the extent to which a city is ordered ac-

cording to a single grid. All remaining indicators’ formulae use the (unweighted)

simplified graph for the most faithful model of the urban form, geographically and

topologically. We calculate each city’s median street segment length ĩ, average node de-

gree k (i.e., how many edges are incident to the nodes on average), proportion of nodes

that are dead-ends Pde, and proportion of nodes that are four-way intersections P4w.

Finally, we calculate each city street network’s average circuity, ς, as:

ς ¼ Lnet
Lgc

ð4Þ

where Lnet represents the sum of all edge lengths in the graph and Lgc represents the

sum of all great-circle distances between all pairs of adjacent nodes. Thus, ς represents

how much more circuitous a city’s street network is than it would be if all its edges

were straight-line paths between nodes (Boeing 2019; Qureshi et al. 2002).

We visualize these characteristics and examine their statistical relationships to

explore the nature of spatial order/disorder in the street networks’ orientations,

hypothesizing that more-gridded cities (i.e., higher φ values) have higher connect-

edness (i.e., higher node degrees, more four-way intersections, fewer dead-ends)

and less-winding street patterns. Finally, to systematically interpret city similar-

ities and differences, we cluster the study sites in a four-dimensional feature

space of the key indicators of interest (k, φ, ĩ, and ς), representing a cross-section

of street network character. We first standardize the features for appropriate scal-

ing, then perform hierarchical agglomerative clustering using the Ward linkage

method with a Euclidean metric.

Results
Table 1 presents the indicators’ values for each of the cities studied. We find that Ηo

and Ηw are very strongly correlated (Pearson product-moment correlation coefficient

r > 0.99, p < 0.001) and thus provide essentially redundant statistical information about

these networks. Therefore, the remainder of these findings focus on Ηo unless other-

wise explicitly stated. Three American cities (Chicago, Miami, and Minneapolis) have

the lowest orientation entropies of all the cities studied, indicating that their street net-

works are the most ordered. In fact, all 16 cities with the lowest entropies are in the US

and Canada. Outside of the US/Canada, Mogadishu, Kyoto, and Melbourne have the

lowest orientation entropies. Surprisingly, the city with the highest entropy, Charlotte,
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Table 1 Resulting indicators for the 100 study sites

Region City φ Ηo Ηw ĩ ς k̅ Pde P4w

Asia/Oceania Bangkok 0.105 3.465 3.452 64.6 1.059 2.385 0.360 0.108

Beijing 0.335 3.177 3.206 177.5 1.053 2.985 0.135 0.241

Hanoi 0.010 3.573 3.572 64.4 1.065 2.610 0.246 0.102

Hong Kong 0.012 3.571 3.563 61.0 1.137 2.932 0.114 0.174

Jakarta 0.167 3.391 3.347 52.8 1.065 2.741 0.175 0.096

Kabul 0.076 3.499 3.510 79.3 1.062 2.673 0.226 0.130

Karachi 0.088 3.485 3.493 71.3 1.032 3.027 0.095 0.216

Kathmandu 0.054 3.523 3.500 63.3 1.071 2.595 0.234 0.089

Kyoto 0.357 3.148 3.229 49.6 1.090 2.887 0.134 0.157

Manila 0.062 3.514 3.484 63.5 1.023 3.141 0.095 0.347

Melbourne 0.340 3.172 3.203 51.9 1.037 3.160 0.060 0.332

Mumbai 0.075 3.499 3.476 68.9 1.081 2.705 0.211 0.136

New Delhi 0.062 3.515 3.491 62.5 1.083 2.696 0.197 0.119

Osaka 0.243 3.298 3.306 51.0 1.025 3.155 0.069 0.292

Phnom Penh 0.324 3.193 3.235 81.6 1.040 2.784 0.205 0.188

Pyongyang 0.024 3.557 3.568 132.4 1.097 2.524 0.294 0.120

Seoul 0.009 3.573 3.573 53.5 1.048 3.011 0.101 0.205

Shanghai 0.121 3.447 3.433 233.0 1.040 3.017 0.156 0.317

Singapore 0.005 3.578 3.570 64.7 1.077 2.994 0.110 0.215

Sydney 0.092 3.480 3.431 93.1 1.073 2.674 0.206 0.087

Taipei 0.158 3.402 3.428 73.5 1.068 3.096 0.110 0.305

Tokyo 0.050 3.528 3.529 49.6 1.046 2.950 0.119 0.186

Ulaanbaatar 0.058 3.519 3.463 88.7 1.065 2.486 0.283 0.061

Europe Amsterdam 0.071 3.504 3.488 65.8 1.080 2.897 0.146 0.205

Athens 0.041 3.538 3.532 55.5 1.019 3.245 0.056 0.363

Barcelona 0.108 3.462 3.460 78.1 1.052 3.135 0.078 0.303

Berlin 0.011 3.572 3.570 113.1 1.040 3.002 0.118 0.259

Budapest 0.050 3.528 3.516 93.0 1.032 3.037 0.096 0.231

Copenhagen 0.029 3.552 3.551 78.0 1.048 2.881 0.146 0.194

Dublin 0.024 3.557 3.541 71.5 1.061 2.492 0.279 0.068

Glasgow 0.047 3.531 3.513 72.3 1.079 2.620 0.238 0.109

Helsinki 0.006 3.577 3.571 42.0 1.063 2.348 0.395 0.134

Kiev 0.014 3.568 3.554 125.1 1.053 2.813 0.164 0.160

Lisbon 0.023 3.558 3.546 60.8 1.068 2.923 0.108 0.154

London 0.015 3.566 3.564 70.3 1.061 2.561 0.251 0.070

Madrid 0.019 3.562 3.553 62.5 1.050 3.079 0.065 0.210

Moscow 0.007 3.576 3.573 130.5 1.055 2.999 0.074 0.170

Munich 0.078 3.496 3.482 96.0 1.046 2.958 0.099 0.200

Oslo 0.008 3.574 3.564 78.0 1.095 2.711 0.197 0.113

Paris 0.016 3.566 3.568 71.5 1.023 3.110 0.050 0.240

Prague 0.049 3.529 3.513 84.5 1.065 2.807 0.177 0.171

Reykjavik 0.056 3.522 3.529 63.2 1.071 2.540 0.283 0.117

Rome 0.005 3.578 3.578 73.7 1.070 2.820 0.161 0.145

Sarajevo 0.039 3.540 3.558 94.7 1.133 2.522 0.270 0.078
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Table 1 Resulting indicators for the 100 study sites (Continued)

Region City φ Ηo Ηw ĩ ς k̅ Pde P4w

Stockholm 0.006 3.577 3.568 82.0 1.091 2.681 0.222 0.141

Venice 0.017 3.564 3.553 23.2 1.090 2.474 0.300 0.073

Vienna 0.050 3.528 3.515 90.4 1.043 2.985 0.122 0.244

Warsaw 0.036 3.544 3.532 90.9 1.043 2.717 0.204 0.160

Latin America Bogota 0.040 3.539 3.529 58.4 1.044 2.977 0.122 0.234

Buenos Aires 0.151 3.411 3.423 104.8 1.011 3.548 0.027 0.576

Caracas 0.029 3.551 3.564 95.3 1.148 2.710 0.217 0.145

Havana 0.029 3.551 3.552 86.9 1.040 3.130 0.118 0.357

Lima 0.278 3.254 3.228 76.7 1.017 3.161 0.040 0.331

Mexico City 0.154 3.408 3.406 69.9 1.043 2.977 0.146 0.264

Port au Prince 0.028 3.552 3.554 55.0 1.088 2.495 0.295 0.087

Rio de Janeiro 0.014 3.568 3.566 74.0 1.055 2.804 0.172 0.147

Sao Paulo 0.002 3.581 3.580 76.0 1.050 2.936 0.120 0.176

Middle East/Africa Baghdad 0.083 3.490 3.498 68.3 1.033 3.043 0.050 0.144

Beirut 0.206 3.344 3.308 63.9 1.026 3.061 0.072 0.218

Cairo 0.041 3.538 3.526 66.6 1.067 2.996 0.085 0.171

Cape Town 0.025 3.556 3.553 75.2 1.102 2.793 0.183 0.162

Casablanca 0.094 3.477 3.461 48.0 1.048 3.026 0.080 0.178

Damascus 0.043 3.536 3.525 65.8 1.085 2.801 0.146 0.107

Dubai 0.031 3.550 3.529 79.7 1.087 2.925 0.074 0.073

Istanbul 0.007 3.576 3.574 50.1 1.059 2.998 0.093 0.174

Jerusalem 0.014 3.568 3.562 44.0 1.092 2.735 0.180 0.109

Johannesburg 0.019 3.562 3.556 88.6 1.098 2.865 0.158 0.182

Lagos 0.039 3.540 3.521 87.2 1.048 2.619 0.223 0.070

Mogadishu 0.375 3.123 3.292 39.4 1.019 3.346 0.055 0.472

Nairobi 0.014 3.568 3.556 91.8 1.083 2.506 0.279 0.075

Tehran 0.137 3.427 3.405 52.0 1.045 2.652 0.240 0.134

US/Canada Atlanta 0.315 3.204 3.197 112.5 1.074 2.806 0.164 0.153

Baltimore 0.223 3.324 3.367 100.0 1.036 3.182 0.085 0.360

Boston 0.026 3.554 3.552 77.0 1.039 2.945 0.135 0.211

Charlotte 0.002 3.582 3.581 117.2 1.067 2.546 0.288 0.139

Chicago 0.899 2.083 2.103 105.3 1.016 3.343 0.074 0.507

Cleveland 0.486 2.961 2.899 103.7 1.029 2.979 0.091 0.198

Dallas 0.305 3.218 3.182 106.1 1.042 3.120 0.091 0.317

Denver 0.678 2.634 2.571 102.7 1.031 3.249 0.071 0.416

Detroit 0.582 2.807 2.718 101.2 1.012 3.352 0.053 0.482

Honolulu 0.034 3.545 3.550 101.8 1.073 2.681 0.252 0.185

Houston 0.425 3.052 3.006 96.2 1.045 3.027 0.127 0.307

Las Vegas 0.542 2.874 2.775 86.1 1.079 2.676 0.230 0.166

Los Angeles 0.348 3.161 3.145 109.9 1.048 2.911 0.171 0.273

Manhattan 0.669 2.650 2.571 82.2 1.017 3.508 0.027 0.572

Miami 0.811 2.341 2.291 96.7 1.023 3.236 0.069 0.407

Minneapolis 0.749 2.486 2.464 115.4 1.023 3.393 0.053 0.521

Montreal 0.204 3.346 3.332 87.4 1.057 3.239 0.051 0.344
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is also in the US. São Paulo and Rome immediately follow it as the next highest cities.

Chicago, the most ordered city, has a φ of 0.90, while Charlotte, the most disordered,

has a φ of 0.002. Recall that a φ of 0 indicates a uniform distribution of streets in every

direction and a φ of 1 indicates a single perfectly-ordered grid. Charlotte’s and São

Paulo’s street orientations are nearly perfectly disordered.

Venice, Mogadishu, Helsinki, Jerusalem, and Casablanca have the shortest median

street segment lengths (indicating fine-grained networks) while Kiev, Moscow,

Pyongyang, Beijing, and Shanghai have the longest (indicating coarse-grained net-

works). Due to their straight gridded streets, Buenos Aires, Detroit, and Chicago have

the least circuitous networks (only 1.1%–1.6% more circuitous than straight-line dis-

tances), while Caracas, Hong Kong, and Sarajevo have the most circuitous networks

(13.3%–14.8% more circuitous than straight-line distances) due largely to topography.

Helsinki and Bangkok have the lowest average node degrees, each with fewer than 2.4

streets per node. Buenos Aires and Manhattan have the greatest average node degrees,

both over 3.5 streets per node. Buenos Aires and Manhattan similarly have the largest

proportions of four-way intersections and the smallest proportions of dead-end nodes.

Figure 1 and Table 2 aggregate these results by world region (though note that the

regional aggregation sample sizes are relatively small and thus the usual caveats apply).

On average, the US/Canadian cities exhibit the lowest street orientation entropy, circu-

ity, and proportions of dead-ends as well as the highest median street segment lengths,

average node degrees, and proportions of four-way intersections. They are also by far

the most grid-like in terms of φ. On average, the European cities exhibit the highest

street orientation entropy and proportion of dead-ends as well as the lowest average

node degrees. They are the least grid-like in terms of φ.

To illustrate the geography of these order/entropy trends, Fig. 2 maps the 100 study

sites by φ terciles. As expected, most of the sites in the US and Canada fall in the high-

est tercile (i.e., they have low entropy and highly-ordered, grid-like street orientations),

but the notable exceptions of high-entropy Charlotte, Boston, and Pittsburgh fall in the

lowest tercile. Most of the sites in Europe fall in the lowest tercile (i.e., they have high

Table 1 Resulting indicators for the 100 study sites (Continued)

Region City φ Ηo Ηw ĩ ς k̅ Pde P4w

New Orleans 0.123 3.444 3.457 99.6 1.035 3.378 0.077 0.526

Orlando 0.481 2.969 2.929 100.1 1.064 2.914 0.120 0.237

Philadelphia 0.312 3.209 3.267 83.9 1.030 3.315 0.047 0.398

Phoenix 0.586 2.801 2.563 97.1 1.073 2.795 0.186 0.171

Pittsburgh 0.018 3.564 3.565 94.0 1.054 2.854 0.173 0.231

Portland 0.679 2.632 2.680 82.1 1.041 3.032 0.146 0.327

San Francisco 0.278 3.253 3.226 94.4 1.033 3.304 0.087 0.454

Seattle 0.723 2.542 2.474 97.2 1.028 3.107 0.136 0.369

St Louis 0.276 3.256 3.225 107.0 1.023 3.165 0.098 0.374

Toronto 0.474 2.980 2.885 103.1 1.090 2.994 0.109 0.217

Vancouver 0.749 2.488 2.413 103.7 1.022 3.308 0.073 0.455

Washington 0.377 3.121 3.113 99.5 1.038 3.252 0.065 0.370

φ is the orientation-order indicator, Ηo represents street orientation entropy, Ηw represents weighted street orientation
entropy, ĩ represents median street segment length (meters), ς represents average circuity, k ̅ represents average node
degree, Pde represents the proportion of nodes that are dead-ends, and P4w represents the proportion of nodes that are
four-way intersections
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entropy and disordered street orientations). Most of the sites across the Middle East

and South Asia fall in the middle tercile.

To better visualize spatial order and entropy, we plot polar histograms of each city’s

street orientations. Each polar histogram contains 36 bins, matching the description in

the methods section. Each histogram bar’s direction represents the compass bearings of

the streets (in that histogram bin) and its length represents the relative frequency of

streets with those bearings. The two examples in Fig. 3 demonstrate this. On the left,

Manhattan’s 29° angled grid originates from the New York Commissioners’ Plan of

1811, which laid out its iconic 800-ft × 200-ft blocks (Ballon 2012; Koeppel 2015).

Broadway weaves diagonally across it, revealing the path dependence of the old Wick-

quasgeck Trail’s vestiges, by which Native Americans traversed the island long before

the first Dutch colonists arrived (Holloway 2013). On the right, Boston features a grid

in some neighborhoods like the Back Bay and South Boston, but they tend to not align

with one another, resulting in the polar histogram’s jumble of competing orientations.

Furthermore, the grids are not ubiquitous and Boston’s other streets wind in various di-

rections, resulting from its age (old by American standards), terrain (relatively hilly),

and historical annexation of various independent towns with their own pre-existing

street networks.

Figures 4 and 5 visualize each city’s street orientations as a polar histogram. Figure 4

presents them alphabetically to correspond with Table 1 while Fig. 5 presents them in

descending order of φ values to better illustrate the connection between entropy, gridded-

ness, and statistical dispersion. The plots exhibit perfect 180° rotational symmetry and,

typically, approximate 90° rotational symmetry as well. About half of these cities (49%)

have an at least approximate north-south-east-west orientation trend (i.e., 0°-90°-180°-

270° are their most common four street bearing bins). Another 14% have the adjacent

Table 2 Mean values of indicators aggregated by world region

φ Ηo Ηw ĩ ς k̅ Pde P4w

Asia/Oceania 0.123 3.439 3.437 80.6 1.062 2.836 0.171 0.184

Europe 0.033 3.547 3.540 78.7 1.061 2.814 0.172 0.172

Latin America 0.081 3.490 3.489 77.5 1.055 2.971 0.140 0.257

Middle East/Africa 0.081 3.490 3.490 65.8 1.064 2.883 0.137 0.162

US/Canada 0.427 3.003 2.969 98.8 1.043 3.090 0.116 0.334

See Table 1 for column definitions

Fig. 1 Probability densities of cities’ φ, Ηo, and Ηw, by region, estimated with kernel density estimation. The
area under each curve equals 1
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orientations (i.e., 10°-100°-190°-280° or 80°-170°-260°-350°) as their most common. Thus,

even cities without a strong grid orientation often still demonstrate an overall tendency fa-

voring north-south-east-west orientation (e.g., as seen in Berlin, Hanoi, Istanbul, and

Jerusalem).

Straightforward orthogonal grids can be seen in the histograms of Chicago, Miami, and

others. Detroit presents an interesting case, as it primarily comprises two separate orthog-

onal grids, one a slight rotation of the other. While Seattle’s histogram looks fairly grid-like,

it is not fully so: most of Seattle is indeed on a north-south-east-west grid, but its downtown

rotates by both 32° and 49° (Speidel 1967). Accordingly, there are observations in all of its

bins and its Ηo = 2.54 and φ = 0.72, whereas a perfect grid would have Ηo = 1.39 and φ = 1.

Thus, it is about 72% of the way between perfect disorder and a single perfect grid.

However, its rotated downtown comprises a relatively small number of streets such that the

Fig. 3 Street networks and corresponding polar histograms for Manhattan and Boston

Fig. 2 Map of study sites in terciles of orientation-order, φ
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rest of the city’s much larger volume swamps the histogram’s relative frequencies. The same

effects are true of similar cites, such as Denver and Minneapolis, that have downtown grids

at an offset from the rest of the city (Goodstein 1994). If an entire city is on a grid except

for one relatively small district, the primary grid tends to overwhelm the fewer offset streets

(cf. Detroit, with its two distinct and more evenly-sized separate grids).

Figures 4 and 5 put Chicago’s low entropy and Charlotte’s high entropy in per-

spective. Of these 100 cities, Chicago exhibits the closest approximation of a single

perfect grid with the majority of its streets falling into just four bins centered on

0°, 90°, 180°, and 270°. Its φ = 0.90, suggesting it is 90% of the way between perfect

disorder and a single perfect grid, somewhat remarkable for such a large city. Most

American cities’ polar histograms similarly tend to cluster in at least a rough, ap-

proximate way. Charlotte, Rome, and São Paulo, meanwhile, have nearly uniform

distributions of street orientations around the compass. Rather than one or two

primary orthogonal grids organizing city circulation, their streets run more evenly

in every direction.

As discussed earlier, orientation entropy and weighted orientation entropy are strongly

correlated. Additionally, φ moderately and negatively correlates with average circuity (r(φ,

ς) = − 0.432, p < 0.001) and the proportion of dead-ends (r(φ, Pde) = − 0.376, p < 0.001), and

Fig. 4 Polar histograms of 100 world cities’ street orientations, sorted alphabetically corresponding with
Table 1
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moderately and positively correlates with the average node degree (r(φ, k) = 0.518, p < 0.001)

and proportion of four-way intersections (r(φ, P4w) = 0.634, p < 0.001). As hypothesized, cit-

ies with more grid-like street orientations tend to also have more streets per node, more

four-way junctions, fewer winding street patterns, and fewer dead-ends. Besides these

relationships, φ also has a weak but significant correlation with median street segment

length (r(φ, ĩ) = 0.27, p < 0.01), concurring with previous findings examining the UK alone

(Gudmundsson and Mohajeri 2013). Average circuity moderately strongly and negatively

correlates with the average node degree (r(ς, k) = − 0.672, p < 0.001) and the proportion of

four-way intersections (r(ς, P4w) = − 0.689, p < 0.001). Cities with more winding street pat-

terns tend to have fewer streets per node and fewer grid-like four-way junctions.

Figure 6 presents the dendrogram obtained from the cluster analysis, allowing

us to systematically explore cities that are more- or less-similar to each other.

The dendrogram’s structure suggests three high-level superclusters of cities, but

for further analysis, we cut its tree at an intermediate level (eight clusters) for

better external validity and more nuanced insight into those larger structures. To

visualize these clusters another way, we map their four-dimensional feature space

to two dimensions using t-SNE, a manifold learning approach for nonlinear

dimensionality reduction that is well-suited for embedding higher-dimensional

Fig. 5 Polar histograms from Fig. 4, resorted by descending φ from most to least grid-like (equivalent to
least to greatest entropy)
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data in a plane for visualization (van der Maaten and Hinton 2008). Figure 7

scatterplots the cities in these two dimensions: the t-SNE projection preserves

their cluster structure relatively well despite inherent information loss, but, given

the global density-equalizing nature of the algorithm, the relative distances within

Fig. 6 Cluster analysis dendrogram. Cluster colors correspond to Fig. 7
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and between clusters are not preserved in the embedding and should not be

interpreted otherwise.

Most of the North American cities lie near each other in three adjacent clusters

(red, orange, and blue), which contain grid-like—and almost exclusively North

American—cities. The orange cluster represents relatively dense, gridded cities like

Chicago, Portland, Vancouver, and Manhattan. The blue cluster contains less-

perfectly gridded US cities, typified by San Francisco and Washington (plus, interest-

ingly, Buenos Aires). The red cluster represents sprawling but relatively low-entropy

cities like Los Angeles, Phoenix, and Las Vegas. Sprawling, high-entropy Charlotte is

in a separate cluster (alongside Honolulu) dominated by cities that developed at least

in part under the auspices of twentieth century communism, including Moscow, Kiev,

Warsaw, Prague, Berlin, Kabul, Pyongyang, and Ulaanbaatar. Beijing and Shanghai are

alone in their own cluster, more dissimilar from the other study sites. The dark gray

cluster comprises the three cities with the most circuitous networks: Caracas, Hong

Kong, and Sarajevo. While the US cities tend to group together in the red, orange,

and blue clusters, the other world regions’ cities tend to distribute more evenly across

the green, purple, and light gray clusters.

Discussion
The urban design historian Spiro Kostof once said: “We ‘read’ form correctly only to

the extent that we are familiar with the precise cultural conditions that generated it…

The more we know about cultures, about the structure of society in various periods of

history in different parts of the world, the better we are able to read their built environ-

ment” (Kostof 1991, p. 10). This study does not identify whether or how a city is

planned or not. Specific spatial logics cannot be conflated with planning itself, which

takes diverse forms and embodies innumerable patterns and complex structures, as do

informal settlements and organic urban fabrics. In many cities, centrally planned and

Fig. 7 Scatterplot of cities in two dimensions via t-SNE. Cluster colors correspond to Fig. 6. Triangles
represent US/Canadian cities and circles represent other cities
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self-organized spatial patterns coexist, as the urban form evolves over time or as a city

expands to accrete new heterogeneous urban forms through synoecism.

Yet these findings do, in concert, illustrate different urban spatial ordering principles

and help explain some nuances of griddedness. For example, gridded Buenos Aires has

a φ value suggesting it only follows a single grid to a 15% extent. However, its low cir-

cuity and high average node degree values demonstrate how it actually comprises mul-

tiple competing grids—which can indeed be seen in Figs. 4 and 5—and it clusters

accordingly in Figs. 6 and 7 with gridded American cities. Jointly considered, the φ in-

dicator, average circuity, average node degree, and median street segment length tell us

about the extent of griddedness and its character (curvilinear, straight-line, monolithic,

heterogeneous, coarse-grained, etc.). Charlotte further illustrates the importance of tak-

ing these indicators together. Although its φ and orientation entropy are more similar

to European cities’ than American cities’, it is of course an oversimplification to claim

that Charlotte is therefore the US city with the most “European” street network—in

fact, its median street segment length is about 50% longer than that of the average

European city, and among European cities, Charlotte clusters primarily with those of

the Communist Bloc. Pittsburgh, on the other hand, sits alone in a small sub-cluster

with Munich and Vienna.

We find that cities with higher φ values also tend to have higher node degrees, more

four-way intersections, fewer dead-ends, and less-winding street patterns. That is, cities

that are more consistently organized according to a grid tend to exhibit greater con-

nectedness and less circuity. Interestingly, the Ηo and Ηw orientation entropies are ex-

tremely similar and strongly correlated: the weighted curvatures (versus straight-line

orientation) of individual street segments have little impact on citywide orientation en-

tropy, but the average circuity of the city network as a whole positively correlates with

orientation entropy. This finding deserves further exploration.

These results also demonstrate substantial regional differences around the

world. Across these study sites, US/Canadian cities have an average φ value

nearly thirteen-times greater than that of European cities, alongside nearly double

the average proportion of four-way intersections. Meanwhile, these European cit-

ies’ streets on average are 42% more circuitous than those of the US/Canadian

cities. These findings illustrate the differences between North American and

European urban patterns. However, likely due to such regional heterogeneity, this

study finds statistical relationships somewhat weaker (though still significant)

than prior findings examining cities in the UK exclusively.

Accordingly, given the heterogeneity of these world regions, future research can

estimate separate statistical models for individual regions or countries—or even the

neighborhoods of a single city to draw these findings closer to the scale of plan-

ning/design practice. The methods and indicators developed here offer planners

and designers a toolbox to quantify urban form patterns and compare their own

cities to those elsewhere in the world. Our preliminary results suggest trends and

patterns, but future work should introduce additional controls to clarify relation-

ships and make these findings more actionable for researchers and practitioners.

For instance, topography likely constrains griddedness and influences circuity and

orientation entropy: a study of urban elevation change and hilliness in conjunction

with entropy and circuity would help clarify these relationships. Additionally,
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further research can unpack the relationship between development era, design

paradigm, city size, transportation planning objectives, and street network entropy

to explore how network growth and evolution affect spatial order. Finally, given

the importance of taking multiple indicators in concert, future work can develop a

grid-index to unify them and eventually include streetscape and width attributes as

further enrichment to explore walkability and travel behavior.

Conclusion
Street networks organize and constrain a city’s transportation dynamics according

to a certain spatial logic—be it planned or unplanned, ordered or disordered. Past

studies of this spatial order have been challenged by small samples, limited geog-

raphies, and abstract entropy indicators. This study accordingly looked at a larger

sample of cities around the world, empirically examining street network configur-

ation and entropy across 100 cities for the first time. It measured network

orientation entropy, circuity, connectedness, and grain. It also developed an

orientation-order indicator φ, to quantify the extent to which a network is

ordered according to a single grid.

This study found significant correlations between φ and other indicators of spatial

order, including street circuity and measures of connectedness. It empirically

confirmed that the cities in the US and Canada are more grid-like (exhibiting far less

entropy and circuity) than was typical elsewhere. It is noteworthy that Chicago—the

foremost theoretical model of twentieth century city growth and development in

urban studies (Dear 2001; Park and Burgess 1925; Wirth 1928)—is an extreme outlier

among world cities in terms of spatial orientation-order. In sum, these methods and

indicators demonstrate scalable techniques to empirically measure and visualize the

complexity of spatial order, illustrating patterns in urbanization and transportation

around the world.
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