
 1

A Method for Semantically Enhancing the Service Discovery Capabilities of UDDI
Rama Akkiraju1, Richard Goodwin1, Prashant Doshi2, Sascha Roeder3

1IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
2Department of Computer Science, University of Illinois , 851 S. Morgan, Chicago, IL 60607

3IBM Germany, Hechstheimer str. 2 Mainz, Germany, 55131

{akkiraju,rgoodwin}@us.ibm.com

pdoshi@cs.uic.edu

sroeder@de.ibm.com

Abstract

The promise of dynamic selection of business services and
automatic integration of applications written to Web
Services standards is yet to be realized. This is partially
attributable to the lack of semantics in the current Web
Service standards. While efforts to develop markup
languages , such as DAML-S, for semantic Web Services are
a step in the right direction, more work needs to be done to
investigate their applicability in an industry setting. In this
work, we expand on previous work done on combining the
semantic web with UDDI [Paolucci 2002-2], by presenting a
method to improve the effectiveness of service discovery in
UDDI, an industry initiated Web Service directory. Our
contributions are three fold: First, we present an extension
to the UDDI inquiry API specification to enable requesters
to specify the required capabilities of a service. Second, we
enhance the service discovery of UDDI by performing
semantic matching and automatic service composition using
planning algorithms . Third, we propose to present these
service compositions in a business process execution
language called BPEL4WS, an industry standard, to enable
automatic execution of the services that are composed. We
believe that our approach presents a viable method for
significantly enhancing the automatic service discovery and
execution of Web Services.

1. Introduction
Recent industry activity in Web Services standards has
reinvigorated the enterprise application integration
community. By providing a standards-based framework for
exchanging information dynamically on demand between
applications, Web Services show promise to address the
information integration needs of enterprise application
integration. Industry efforts to standardize web service
description, discovery and invocation have led to standards
such as WSDL [Christenson et al, 2001], UDDI [UDDI
2002], and SOAP [SOAP 2000]. However, these standards,
in their current form, suffer from the lack of semantic

representation leaving the promise of automatic integration
of applications written to web services standards unfulfilled.
There are two key challenges to achieving this goal: First, as
the number of web services increases, location of suitable
services that provide a solution to the problem at hand
becomes more important than ever. Second, once services
are located applications should be able to integrate with
those services automatically. Both these challenges rely on
the ability of service providers to describe the capabilities of
their services and the ability of service requesters to
describe their requirements in an unambiguous and
machine-interpretable form. In this paper, we focus on
addressing the first challenge.

Finding and matching of web services is
fundamentally semantic in nature. The current industry
standards can describe the interface of services and how the
services are deployed well (via SOAP and WSDL), but are
limited in their ability to express what the capabilities of the
services are. This lack of semantics is the result of the
current syntax-oriented interface representations that cannot
express the context in which the services operate and the
relationships among various entities in that context .
Although standards communities in various industries are
focused on bringing uniformity to the interfaces of business
applications, they are still evolving. At the sometime, it
would be presumptuous to assume that all applications and
their corresponding services that can be imagined can be
standardized. This leads to disparities in service
specifications by service providers for similar services in a
given industry. Multiple service providers could offer
similar web services with different interfaces. Therefore,
describing how the services may integrate alone is not
sufficient. A service requester may not be able to find a
service provider due to the superficial differences in
interface specifications even if it were a suitable match. A
first step toward solving this service location problem is to
rise above these superficial differences in the representation
of interfaces of services and to identify the semantic
similarities between them in discovering the matches
[Paolucci 2002-2]. Considerable work has been done
already in this area by the semantic web community.

 2

The Semantic Web is an effort to extend the
current World Wide Web by representing data on the web
in a meaningful and machine-interpretable form to better
enable computers and people to work in cooperation
[McIIraith et al., 2001]. It is a vision for a Web of
applications (public or private) whose ‘properties,
capabilities, interfaces, and effects are encoded in an
unambiguous, and machine-interpretable form’ [Berners-
Lee et al., 2001]. Recently, basing their work on two of
the important existing technologies for developing the
Semantic Web, namely eXtensible Markup Language
(XML) [XML 2000] and the Resource Description
Framework (RDF) [RDF 1999], a team of researcher’s
with DARPA’s funding have developed agent markup
languages such as DAML [DAML 2000] and DAML-S
[Ankolekar et al., 2002] for semantic markup of software
agents and web services respectively. Supported by an
automatically inferenceable language namely
DAML+OIL [DAML+OIL 2001] (soon to be OWL
[OWL 2002]), DAML family of semantic markup
languages together pave the way for the realization of
Semantic Web Services. Specifically, DAML-S provides
a semantically based view of the Web Services [McIIraith
et al., 2001] thereby complementing the existing interface
specification capabilities of web service description
language (WSDL). Together, these models lay the
foundation for automatic service discovery, service
composition and execution in application integration.

In this work, our goal is (a) to explore the
applicability of research concepts from the semantic web
community in bridging the semantic gaps of application
integration using Web Services, (b) to identify any
unaddressed gaps and (c) to bring our feedback to the
semantic web research community. As a specific
objective, we concentrate on improving the effectiveness
of web service selection using semantic annotations.
While there are multiple ways of discovering web
services, we specifically focus on improving the
effectiveness of UDDI Web Service directory by using
semantics to augment its match making capabilities. Our
work builds upon previous work done by Paolucci,
Kawamura, Payne and Sycara on semantic matching of
web service capabilities [Paolucci 2002-1] and importing
the semantic web in UDDI [Paolucci 2002-2]. This paper
is organized as follows. First, we motivate the reader by
describing the limitations of the current web services
directories. Next, we review the research work that has
already been done in applying semantic web concepts to
address some of these limitations. Then, in solution
approach section, we describe our methodology to
enhancing the service descriptions in UDDI with semantic
annotations in DAML-S and enhanced service discovery
via semantic matching, automatic service composition

and execution. Finally, we present our conclusions and
discuss the future research directions for this work.

2. Problem Description
UDDI [UDDI 2002] is an industry effort to provide
directory services for Web Services offered by businesses .
It allows businesses to publish their services in a directory
and enable other business representatives to locate
partners and to form business relationships based on the
web services they provide. The UDDI specification
provides structural templates for representing information
about business entities, the nature of their services, and
mechanisms to access them. These are facilitated by
standards such as WSDL, and SOAP. It also provides a
standardized set of categories such as NAICS4 and
UNSPSC5 for organizing the services offered by
businesses in the directory to enable quick business-level
and service-level discovery. These taxonomies are
represented via a construct called Tmodel (Technology
Model). The notion of a TModel is analogous to the form
of meta-data that contains information about the artifacts
that are being modeled. Each service can have one or
more Tmodels that help describe the attributes and
characteristics of a service. TModels in UDDI can refer
either to standard technical specifications such as WSDL
for describing Web Services or to abstract specifications
of taxonomic schemes such as NAICS and UNSPSC.

UDDI provides a set of search facilities for
finding businesses, and their services. Services can be
searched by specifying business name, service name,
service category and Tmodels . However, UDDI in its
current form is limited in its search services by its
inability to extend beyond the keyword-based matches.
DAML-S coalition team contrasts DAML-S with UDDI
and brings forth UDDI’s limitations in [[Ankolekar et al.,
2001]]. First, UDDI does not capture the relationships
between entities in its directory and therefore is not
capable of making use of the semantic information to
infer relationships during search. For example, a rental car
service might advertise itself under ‘Car Rental Services’
in UNSPSC category but a request that is looking for car
rental services under ‘Passenger Transport’ category
would not find any matches although ‘Car Rental
Services’ is a sub category under ‘Road Transport’, which
in turn is a sub category of ‘Passenger Transport’. On the
other hand, a semantic match performed by an inferencing
engine using the UNSPSC domain ontology would be

4 The North American Industry Classification System (NAICS)
published by the US Census.
5 The United Nations Standard Product and Services
Classification (UNSPSC) System developed jointly by the
UNDP (United Nations Development Program) and D&B (Dun
& Bradstreet Corporation) in 1998.

 3

able to discover matches in this situation. Second, UDDI
supports search based only on the high-level information
specified about businesses and services. It does not get to
the specifics of the capabilities of services during
matching. For example, UDDI can search for services that
offer car rental services such as creating a reservation,
updating a reservation, getting rental status etc. However,
it cannot search for a service that can create a reservation
by taking information such as user name, credit card
information, rental pick up location, rental drop off
location and drivers license and returning a reservation
number. Although, this input and output information
could be accessed via TModels such as WSDL, UDDI’s
search facilities do not provide this level of service. Third,
the search facilities in UDDI support only direct matches.
In cases where no direct matches are available but a set of
services can be composed to fulfill a request, UDDI fails
to provide any search results because it does not look
beyond direct matches. We argue that these limitations of
UDDI directory service can be overcome by semantic
extensions. Efforts have already been made to overcome
some of these limitations of UDDI.

3. Related Work
In their follow-up work to DAML-S specification,
Paolucci, Kawamura, Payne and Sycara tie the semantic
representation of web services work with web service
directories/registries by arguing that web service
discovery should be based on the semantic match between
a declarative description of the service being sought, and
a description of the service being offered [Paolucci 2002-
1; Payne 2001]. In their work, they present a sample
semantic matching algorithm that matches the inputs,
outputs, preconditions and effects of service requests with
those of service advertisements. They also argue that this
semantic matching is outside the capabilities of registries
such as UDDI and languages such as WSDL. In [Paolucci
2002-1], they present a mapping between service
capability definitions in DAML-S and UDDI records
providing, therefore, a way to record semantic
information within UDDI records. Furthermore, they
show how this encoded information can be used within
the UDDI registry to perform semantic matching.

Our work extends Paolucci, Kawamura, Payne
and Sycara’s work in the following ways. First, we
present a two-stage service discovery process for efficient
semantic matching within the UDDI registry. Second, we
provide a new semantic inquiry API specification that
enables service requesters to specify their request in a
semantic markup language to UDDI directly (an
analogous publish API extension is planned is currently
being implemented). The semantic matching that is
performed within UDDI API invocation is transparent to

the service requester. Third, this semantic discovery API
is capable of automatic service compositions. If no direct
matches are found in the initial semantic matching stage,
then the matcher automatically finds compositions that
might satisfy the given request. We use basic planning
algorithms to compose services. Finally, we propose that
the service compositions discovered be output in
BPEL4WS- Business Process Execution Language for
Web Services - thereby enabling the requester to
automatically invoke the set of composed services within
the context of application integration. We present the
details of our solution approach in the next section.
Although our solution approach addresses semantic
extensions to UDDI registry, the same concepts can be
extended to any semantic service registry or semantically
marked-up software agent repository.

4. Our Solution Approach
Figure 1 shows a modular architecture of our semantically
enhanced UDDI directory. First, service providers
describe the terms and concepts in their problem domain
and their interrelationships to establish the context for
describing the capabilities of their services. This is done
by either creating an ontology document or selecting a
suitable ontology (ies) from an existing ontology
repository. An ontology is a document or a file that
formally defines relations among terms 6. For example, if
a rental car agency wants to publish its car rental services
in UDDI registry, it would first describe the car rental
domain in an ontology with domain classes such as
reservation, pickup location, drop-off location, user,
confirmation number, credit information, business
affiliation, reservation start date, and duration.
Furthermore, a car rental ontology describes the
relationship among these classes by noting facts such as a
reservation will have a confirmation number, a start date,
a duration, a pickup location, drop-off location etc. It
might also capture information such as a pickup location
‘is same as’ a source location, a drop-off location ‘is same
as’ a destination and that both pick and drop-off locations
are ‘sub-classes of’ location etc. These relationships when
represented in a well-defined language can be reasoned
automatically enabling service capability and require ment
matching. We have used DAML+OIL as the ontology
representation language. Next, service providers annotate
their services with semantic information in DAML-S.
This contains information about the service provider, the
functional attributes of a service (such as quality rating,
quality guarantee, geographical radius, etc.), and the

6 A more theoretical definition of ontology is given in [Gruber
1993] as ‘A theory about the nature of existence, of what type of
things exist’.

 4

properties of the service namely the inputs, outputs,
preconditions and effects. All of these together describe
what a service is capable of doing. The properties of
service semantics represented in DAML-S refer to the
concepts defined in the domain ontology to express the
context.

After annotating services with semantics, a
service provider publishes them in a UDDI registry.
Currently, we use the user-defined fields in DAML-S
(serviceCategory) to capture the UDDI taxonomy
information. The publisher module uses this information
to publish the given services under the specified UDDI
taxonomy 7. The job of registry publisher module is to
translate the DAML-S services to UDDI records and then
publish the given services under the specified taxonomy
(such as NAICS or UNSPSC) in UDDI. We follow the
mapping prescribed in [Paolucci 2002-2]. According to
this mapping, semantic information about a service
provider maps with the meta information attached to a
UDDI businessEntity data structure. The remaining
pieces of semantics of a service such as inputs, outputs,
preconditions and effects, which do not have any
analogous data structures in UDDI, are referenced via
Tmodels created for DAML-S descriptions.

Figure 1. A high-level modular architecture of semantically
enhanced UDDI directory

Let us consider a classic travel domain example

to illustrate how the semantic information of services in
the UDDI registry can help a service requester locate
suitable services. Let us say that a traveler looking for a
rental car in a given location is interested in finding web
services offered by rental car agencies that can make a
firm reservation valid from a given start date to a given
end date. The traveler might be willing to provide
information such as name, phone number, driver’s license
number, a credit card number etc. In specifying these
details, it would be informative if the traveler can refer to

7 We are currently working on improving this process by
extending UDDI’s publish API schema definitions

an ontology that defines these parameters in the context of
a travel domain. For example, a travel ontology can
codify the relationships such as a compact car ‘is a’ car
which ‘is a’ vehicle. As we have discussed earlier, neither
WSDL nor UDDI are capable of carrying this type of
semantic information. Therefore, we have extended the
UDDI API schema to enable a service requester to specify
the semantic properties of the inputs that they can provide
and the outputs that they expect of a web service8. Our
extensions (in bold font) to the ‘find_service’ UDDI API
schema are presented below in the following snippet.

 <xsd:element name="find_service"
type="IBMSemanticExt:find_service" />
 <xsd:complexType name="find_service">
 <xsd:complexContent>
 <xsd:extension base="uddi:find_service">
 <xsd:sequence>
 <xsd:element ref="rdf:Property"
minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

UDDI’s find_service API allows requesters to
specify a set of names of web services (if known),
category information, Tmodel information, and qualifiers
that indicate what operations to perform on the specified
parameters. For example, an ‘andall’ qualifier would find
an intersection of all the services from the given
categories (more details on this and other UDDI API
specification can be obtained from [UDDI-API 2002]).
There is no provision in this API for a service requestor to
specify match criteria such as what inputs can she supply
and what outputs are expected of a service. Our extension
makes providing such information possible. We bring the
expressiveness of RDF and DAML concepts into UDDI
API schema by adding a new parameter RDF:Property to
find_service() API.

The service finder module (shown in figure 1)
receives requests and executes the inquiry. If UDDI
category information is specified in the inquiry, then a
two-step search process is employed. First, a service
category filter is applied to the service request. The
service category filter performs a UDDI category-based
search to retrieve all those services that fall under the
specified set of categories in given taxonomies. This is
performed using the standard UDDI find method. These
filtered set of services are then passed into semantic

8 We have chosen a namespace that is different from the UDDI
name space for this API schema extension to not contaminate
the UDDI specification namespace.

Semantic
Service
Registry

Ontology
Repository

Annotate services

Select suitable
ontologies or
Create domain
ontology

Annotate
service
requests

Select suitable
ontologies

Publish
Discover

Inferencing Engine

R
egistry Publisher

Semantic Matcher

Service Finder

Service Composer

Service Provider Service Requester

Semantic Annotation Parser

Q
uery Processor

Semantic Directory Services

Service Category Filter

Semantic
Service
Registry

Ontology
Repository

Annotate services

Select suitable
ontologies or
Create domain
ontology

Annotate
service
requests

Select suitable
ontologies

Publish
Discover

Inferencing Engine

R
egistry Publisher

Semantic Matcher

Service Finder

Service Composer

Service Provider Service Requester

Semantic Annotation Parser

Q
uery Processor

Semantic Directory Services

Service Category Filter

 5

matching engine. Our semantic engine enhances Paolucci,
Kawamura, Payne and Sycara’s engine by offering a
flexible mechanism to specify match criteria [this work is
yet to be published]. In essence, the matching engine
matches the inputs, and outputs of a service request with
those of a service. Two properties are considered a match
if they either match exactly, or as defined by some
relationship that can be inferenced from the ontology
using an inferencing engine. One can associate a
closeness evaluation metric to each relationship
depending on the context. By specifying this type of
match criteria, we allow for matches that are close even
though not exact. Of course, an exact match, by default, is
always preferred. Since there could be more than one
input in the input sets of the request and the service, the
matching engine considers the maximum of the match
distances between the corresponding input properties in
the input sets of the request and the service to determine if
the inputs are a match. Similar procedure applies to the
matching of the outputs. It is to be noted that a service
request should provide all the inputs required by a service
being matched while a service should be able to provide
all the outputs expected by a request to be considered a
match [Payne 2001]. First, the matching engine looks for
any services that directly match the given request. A
match is considered a direct match if a single service
meets the requirements of a request either exactly or
within the specified closeness defined by a degree of
match characteristic. Going back to our car rental
example, using this semantic match approach, a traveler’s
request for a rental car would match with all services that
offer either a compact car or a mid-size car or a luxury car
since each one of it holds a ‘is a’ relationship with ‘car’ in
the car domain ontology. In this case, the matcher has
found more specific services than the ones that a traveler
requested. Vice versa can also be envisioned. If no direct
matches can be found, our semantic matching engine
automatically finds ways in which two or more services
could be composed to meet the original request.

Figure 4. Service Composition: A simple backward chainer

Simple service composition is achieved,
currently, by employing a backward chaining algorithm.
Figure 4 shows an example where a simple backward
chaining algorithm would be able to compose services S1,
S2 and S3 (in that sequence) to satisfy request R. First all
services whose outputs match those of the request are
assigned as leaf nodes in the tree. Then the algorithm
traverses the tree of service inputs and outputs to find any
service whose outputs match the inputs of the leaf node.
Finally, it presents all the service combinations that
together can meet the specified request. We have also
separately tested service composition via a planner by
transposing the DAML-S service descriptions into PDDL
(Planning Domain Definition Language) [PDDL 1998]
that serves as input to the planner. Integration of this
planner into our framework is planned for later this year.

For implementation of this approach, we use
DAML-S version 0.7 developed by DAML-S coalition for
service semantics, and DAML+OIL for representing
ontologies. Our configurable semantic matching engine is
capable of working with any third-party inferencing
engine. To illustrate this, we have tested our matching
engine with DAMLJESSKB, an inferencing engine built
on JESS rules engine developed at Drexel university
[Kopena 2001] as well as IBM's rule engine ABLE [Bigus
2001]. Our directory server is based on IBM’s
implementation of UDDI version 2.0. We have tested our
service composition approach on three domains within the
system; a travel domain, text analysis domain and
question and answering system domain. We are currently
working toward making this prototype available for
general access via IBM’s alphaworks website.

5. Conclusions and Future Work
In this paper, we have presented an approach to enhance
the service discovery in UDDI, a web service directory,
using semantic matching of web services. Building on
Paolucci, et. al’s work [Paolucci 2002-1; Paolucci 2002-
2], we have extended the inquiry capabilities UDDI to
perform automatic service composition using the DAML-
S semantics of services. We have implemented this on
IBM Websphere UDDI Registry. The following items are
planned for immediate development. First, we plan to
present the service compositions that we generate via
planners in BPEL4WS language to enable automatic
execution of services. BPEL4WS allows users to create
complex processes by creating and wiring together
different activities that can, for example, perform Web
services invocations, manipulate data, throw faults, or
terminate a process [Weerawarana and Curbera 2002].
Using BPEL4WS execution engines such as BPWS4J one
can automatically execute the services specified in a
BPEL4WS flow. Service execution closes the loop that

Service 1 (S1)

Inputs: S1I1, S1I2, S1I3

Outputs: S1O1, S1O2, S1O3

Service Request: R

Inputs: RI1, RI2, RI3, RI4

Outputs: RO1, RO2, RO3

Service 2 (S2)

Inputs: S2I1, S2I2, S3I3

Outputs: S2O1, S2O2

Service 3 (S3)

Inputs: S3I1, S3I2

Outputs: S3O1, S3O2, S3O3, S 3O4

Service 1 (S1)

Inputs: S1I1, S1I2, S1I3

Outputs: S1O1, S1O2, S1O3

Service 1 (S1)

Inputs: S1I1, S1I2, S1I3

Outputs: S1O1, S1O2, S1O3

Service Request: R

Inputs: RI1, RI2, RI3, RI4

Outputs: RO1, RO2, RO3

Service Request: R

Inputs: RI1, RI2, RI3, RI4

Outputs: RO1, RO2, RO3

Service 2 (S2)

Inputs: S2I1, S2I2, S3I3

Outputs: S2O1, S2O2

Service 2 (S2)

Inputs: S2I1, S2I2, S3I3

Outputs: S2O1, S2O2

Service 3 (S3)

Inputs: S3I1, S3I2

Outputs: S3O1, S3O2, S3O3, S 3O4

Service 3 (S3)

Inputs: S3I1, S3I2

Outputs: S3O1, S3O2, S3O3, S 3O4

 6

starts with a service inquiry for service requesters.
Second, we plan to integrate more effective planning
techniques for service compositions and study the quality
of results. In the future, we are also interested in
investigating service execution monitoring using the
semantics of services.

Acknowledgements
We would like to thank John Colgrave, IBM’s architect
for UDDI registry, for reviewing and critiquing our
design and helping us improve it .

References
1. [Ankolekar et al., 2002] Anupriya Ankolekar, Mark

Burstein, Jerry Hobbs J., et al. DAML-S: Web
Service Description for the Semantic Web.
Proceedings of First Int'l Semantic Web Conf. (ISWC
02), 2002

2. [Ankolekar et al., 2001] Anupriya Ankolekar, Mark
Burstein, Jerry Hobbs J., et al. DAML-S: Semantic
Markup for Web Services. In Proceedings of the
International Semantic Web Working Symposium
(SWWS), July 30-August 1, 2001

3. [Berners-Lee et al., 1999] Tim Berners-Lee, M.
Fischetti, and T.M. Dertouos. Weaving the Web.
Harper, San Francisco, 1999

4. [Berners-Lee et al., 2001] Tim Berners-Lee, Hendler
J., Lassila. The Semantic Web. Scientific American,
Vol.5/01, May 2001

5. [Bigus 2001] Bigus J., and Schlosnagle D., “Agent
Building and Learning Environment Project:
ABLE”at http://www.research.ibm.com/able/

6. [BPEL 2002] BPEL Technical Commiteee. Business
Process Execution Language: BPEL. http://www-
106.ibm.com/developerworks/webservices/library/ws
-bpel/

7. [Christenson et al, 2001] Erik Christenson, Francisco
Curbera, Greg Meredith and Sanjeeva Weerawarana.
Web Services Description Language (WSDL) .
www.w3.org/TR/wsdl

8. [DAML 2000] DAML Technical Committee.
DARPA Agent Markup Language- DAML.
http://www.daml.org

9. [DAML+OIL 2001] DAML+OIL Technical
Committee. DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index

10. [Gruber 1993] Tom Gruber. A translation approach
to portable ontologies. Knowledge Acquisition 5(2)
199-220, 1993.

11. [Kopena 2001] Joe Kopena, DAMLJESSKB,
http://plan.mcs.drexel.edu/projects/legorobots/design/
software/DAMLJessKB/.

12. [McIIraith et al., 2001] Sheila McIIraith, Tran Son,
and Honglei Zeng. Mobilizing the Semantic Web
with DAML-Enabled Web Services. Semantic Web
Workshop 2001 Hongkong, China.

13. [OWL 2002] OWL Technical Committee. Web
Ontology Language (OWL).
http://www.w3.org/TR/2002/WD-owl-ref-20021112/

14. [Paolucci 2002-1] Massimo Paolucci, Takahiro
Kawamura, Terry R. Payne, and Katia Sycara.
Semantic Matching of Web Services Capabilities.
The First International Semantic Web Conference
(ISWC), Sardinia (Italy), June, 2002.

15. [Paolucci 2002-2] Massimo Paolucci, Takahiro
Kawamura, Terry R. Payne, and Katia Sycara.
Importing the Semantic Web in UDDI. In Web
Services, E-Business and Semantic Web Workshop,
2002.

16. [Payne 2001] Terry Payne, Massimo Paolucci, and
Katia Sycara. Advertising and Matching DAML-S
Service Descriptions. In Semantic Web Working
Symposium (SWWS), 2001
 http://www.daml.org/services

17. [PDDL 1998] PDDL Technical Committee. Planning
Domain Definition Language.
http://www.dur.ac.uk/d.p.long/IPC/pddl.html

18. [RDF 1999] RDF Technical Committee. Resource
Description Framework: RDF.
http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/

19. [SOAP 2000] SOAP Technical Committee. Simple
Object Access Protocol (SOAP)1.1.
http://www.w3.org/TR/SOAP

20. [UDDI 2002] UDDI Technical Committee. Universal
Description, Discovery and Integration (UDDI).
http://www.oasis -open.org/committees/uddi-spec/

21. [UDDI-API 2002] UDDI Technical Committee.
UDDI version 2.0.4 API Specification.
http://www.oasis -open.org/committees/uddi-
spec/tcspecs.shtml#uddiv2

22. [Weerawarana and Curbera 2002] Sanjeeva
Weerawarana , Francisco Curbera. Business Process
with BPEL4WS: Understanding BPEL4WS at
http://www-
106.ibm.com/developerworks/webservices/library/ws
-bpelcol1/

23. [XML 2000] XML Technical Committee. Extensible
Markup Language: XML.
http://www.w3.org/TR/REC-xml

