
1

Ontology-driven Improvement of
Business Process Quality

Alexandra Galatescu Taisia Greceanu
National Institute for R&D in Informatics

8-10 Averescu Avenue, 011455, Bucharest, ROMANIA
{agal, gresta}@ici.ro

Content
Introduction and Motivation

– Application: Process Quality Improvement (PQI)

– Methodologies for PQI: TQM (Total Quality Management) methodology and Taguchi method

– Limits and unsolved problems in the software tools for PQI using TQM and Taguchi method

Ontology-based Representation of PQI and Domain Processes

– Types of ontologies for PQI. Benefits from ontologies for PQI

– Ontology integration in the PQI system

– Limits of the existing ontology languages and editors for process representation

– Types of concepts and relationships in a process-oriented upper-level ontology

– Ontology-based sentences (representation, logic, benefits)

– Types of concepts and relationships in PQI and domain ontologies

Managing Process-oriented Ontologies in a Relational Database

– Benefits from a DBMS for PQI automation

– Examples for the representation of ontological sentences in a relational database

– Benefits for the PQI system from the process-oriented ontologies

Conclusions

2

Application: Process Quality Improvement (PQI)

A continuous and incremental analysis and improvement of the processes and work flows
within and between organizations (vertical (hierarchical) processes or horizontal)

A less radical reengineering of the enterprise processes;

A team-based process (members have different specializations: management, technical,
economic, marketing, human resources, etc).

Motivated by:

Discrepancy between the customers' requirements and the offered products or services,

Instability of the enterprise processes,

Requirements for new types of products,

High costs of the activity/ production,

Too many losses,

Low productivity, etc.

Methodologies: TQM (Total Quality Management) and Taguchi method
Addressed processes: organizational or technological processes, processes for product
design, for marketing, for delivery, etc
Main objectives: to help the team for

analysis of the existing processes, according to the improvement objectives,
decision on the process change.

Additional targets: to help for
organization of the team for PQI;
collection and organization (during brainstorming sessions) of ideas on the process to analyze, on the
improvement objectives, on the representation of the existing process, on the quality characteristics, on
the changes to apply on the existing process, etc.

Conceptual tools: activities and structures for analysis of existing processes, by :
Building process flowcharts; data collection sheets; graphical charts for statistical analyses (TQM);
Planning, designing, executing experiment matrices (Taguchi method);
Analysis of the experiment results: effect on factors and interactions on the quality characteristics and
costs; calculation of the loss function (Taguchi method);
Organization of the team (TQM, Taguchi method);
Brainstorming sessions: verbal structures (mainly cause-effect diagrams, structures with ideas, affinity
diagrams); decision-making tools (voting on ideas) (TQM, Taguchi method).

TQM and Taguchi method are complementary:
TQM: (1) analyzes only the quality characteristics; (2) the causes of the process instability and the
necessary changes in the process are informally stated (during the brainstorming); (3) these causes
must be removed from the process, although there are situations when their removal is not possible.

Taguchi method: (1) analyzes the factors which impact on the values of the characteristics; (2) the
proposed changes in the process are technically and economically motivated; (3) the main target is to
diminish the impact of the causes (which must not be necessarily removed).

3

Limits and unsolved problems in existing software for PQI

Software products for PQI

Pathmaker (SKYMARK), Memory Jogger (GOALQPC), Solutions-PROSPER and PRO-QMS
(DSS Infotech), Qualitek (NUTEK), Microsoft Visio, DataLyzer Spectrum (Stephen Computer
Services, USA), SQCpack (Quality Management Products, Canada), ECHIP (ECHIP Inc.), JMP
(SAS Institute Inc.), knowledge bases with “how-to”, guidebooks, tool libraries, etc.

Limits and unsolved problems

they do not provide guidance and the users must be specialists in TQM, Taguchi method and
mathematical statistics;

the users have to manage symbols with an informal semantics that cannot be compared or
transferred between different types of diagrams and structures;

they do not allow the description and automatic use of explicit correlations between
the activities and the objects which describe them or participate in their execution.

objects and their quality characteristics (which are statistically analyzed).

These correlations are supposed to be in the user's mind and cannot be stored and automatically analyzed.

they do not encourage the use of a common vocabulary between the members of the team
(usually, with different specializations). The ideas are collected in natural language and cannot
be automatically compared. To reach a final decision, many (virtual) discussions are needed.

they implement either TQM methodology or Taguchi method. There is no tool which integrates
them both.

Types of ontologies in PQI (Process Quality Improvement) system

PQI (application) ontology (predefined) - describes, categorizes and constrains concepts and
relationships in the PQI process (which integrates the TQM and Taguchi methodologies);

Main use: for the interface of the system, dynamically built relying on the concepts in PQI ontology, during
the user’s navigation throughout the two methodologies.

a domain (business) ontology (created by the user) - describes the enterprise processes, the
analyzed objects, the objects’ characteristics, the technical factors that impact on object/
product quality, etc.

Main use: common vocabulary between the members in the PQI team.

Main benefits from the two ontologies for the PQI system:

the semantics of the concepts in the PQI ontology is explicit (outside the code), formalized and
represented at the analysis and design time of the PQI system, before its execution:

system interface is dynamically built during the system execution
the user’s actions are dynamically checked and interpreted, depending on the user’s choices;
PQI process is easily changed/ extended (e.g by adding Taguchi method to TQM methodology);

the explicit semantics of the concepts in the domain ontology helps for:
common vocabulary between the members of the team
semantics-based analysis of the domain process (e.g. by comparison and merge of process flowcharts,
expression, comparison and grouping of ideas about the process);
semantics-based access of the data in the repository (by means of concepts in the domain ontology),
semantics-based integration of the PQI steps and operations (which share the concepts in the domain
ontology);

the encoded reasoning of the system is substantially minimized (due to PQI ontology).

4

Need for ontology integration

Need for:
execution of certain PQI steps/ operations (described in PQI ontology) depending on the results
of previous steps / operations (results described in the domain ontology); E.g.

definition of a process, operations, objects and characteristics in the domain ontology (Step 3) only for a
domain already defined (in Step 2)
modification of the existing process (Step 14) only if the new process is stable and able of further
improvement (results of Steps 12, 13);

easy and quick learning of the system by similar semantics for the representation of both
application (PQI system) and business (analyzed process)

same types of concepts/ relationships,
a uniform representation for the user interface (in PQI ontology) and the analyzed process (in domain
ontology).
In most existing applications, the ontologies are used only for business description.

integration of the interface (described in PQI ontology) with the analyzed process (described in
the domain ontology); E.g.

execution of PQI operations is possible only after the selection of the mandatory concepts in the
analyzed process;
structures with meta-schema described in PQI ontology and content composed of concepts in the
domain ontology;

Business and application integration in PQI system (thick arrows: already implemented functions)
(Process-oriented) Upper-level ontology (UO)

(conceptual) subsumption mining subsumption

PQI (application) ontology Data/ knowledge Business (domain) ontology
(TQM methodology) in existing ('medicament administration')

mining databases/ code/ extension
extension Definitions/ schemas documents

in existing application (extended/ new)
(extended/ new) Business/ domain ontology (+ 'manufacturing')

Application ontology (+Taguchi method)

Ontology integration in the PQI system
Alternative solutions for ontology integration

an upper-level ontology; or
a translation algorithm between the concepts and rules in the two ontologies. Disadvantages; it is

mostly encoded and the conceptual integration is accomplished only at the run time of the PQI system.

Benefits from ontology integration
same types of concepts, relationships and axioms in UO used for representing both the PQI (application)

ontology and a business/ domain ontology
application ontology can be extended or new application ontologies can be integrated with the existing

ones (e.g. in PQI system, first was built the ontology for TQM methodology, extended with Taguchi method)
an initial domain ontology can be extended with other domains, analyzed using the same PQI software

and repository (e.g. TQM methodology has been tested for 'medicament administration' domain and Taguchi
method for the 'manufacturing' domain);

besides its direct subsumption from UO, an application ontology can also be built by mining the existing
applications for definitions and schemas (according to the concepts and axioms of UO).

business ontology could be created by mining the existing databases, code, documents and by the
conversion of the extracted information/ knowledge according to the concepts and axioms in UO.

5

Ontology languages and editors for process representation
Existing applications of process-oriented ontologies:

for enterprise process management;
lately, for managing Web service-oriented processes.

Not satisfied requirement for enterprise process representation: representation of:
the enterprise dynamics (changes/ improvements of enterprise processes)
enterprise integration and interoperability (organizational, technological, informational, etc)

Limits of the existing ontology languages and editors:
same orientation as most conceptual models: most of them are object-oriented:

only object (entity)-like concepts;
explicit relationships only between objects and attributes,
only explicit specialization/ generalization relationships between objects (inheritance);

relationships between objects and events upon them (encoded methods);

ontology editors and management tools (e.g. Protégé, OilEd, OntoBroker/ OntoEdit, KAON,
Ontolingua, OntoWeb, OntoSaurus, etc) are not process-oriented, i.e.

without semantic separation of the process and activity-like concepts from the object (entity)-like
concepts involved in the process execution (it is usually encoded)

no capability for the explicit representation, decomposition and interpretation of the processes and
activities designers should devise their own types of concepts and relationships for process description
(possibly, complying with a process-oriented language (e.g. PSL, BPEL, etc))

no reasoner and management functionality for processes (should be built by the developer)

Recommended business process ontology: PSL (Process Specification Language) (initiated by
NIST-National Institute of Standards and Technology), because it can be logically integrated with
KIF (Knowledge Interchange Format) (for knowledge description and exchange).

Types of concepts and relationships in the upper-level
ontology

Process
(composed-of) Complex Operations new concept and relationship

(composed-of) Atomic operations
(composed-of) Atomic Operations

(described-by) Objects relationship outside the code
(described-by) (Object) Characteristics (attributes)

(described-by) Characteristics (attributes) of Operation (e.g state)

Additional information in conceptual models and in proposed upper-level ontology
sequential order and preconditions of the atomic operations in a process;

New elements in the process representation using the upper-level ontology
explicit correlation of atomic operations and objects in ontology-based sentences (operation

description structures), inspired from the syntax of the simple sentence in natural language;
complex operations which:

compose the process and are composed of atomic operations;
difference from subprocess: are represented by ontology-based sentences, inspired from the syntax of the

compound/ complex sentence in natural language;

atomic/ complex operations are preceded by their 'modality' ('must', 'may') and by 'pre-conditions';
in a complex operation, the atomic operations are correlated by interoperation 'connectors' (e.g.

'case', 'then', 'must repeat', etc),), which can be used for the procedural description of the process.

NOTE PQI and domain ontologies differ by the instances of these basic concept types (by particular
processes, operations, objects, characteristics).

Conceptual models
Conceptual models and ontology languages Proposed representation

6

Basic concepts in the upper-level ontology

process: controlled sequence of operations (e.g. operations that compose the
process 'medicament administration' in the domain ontology);
atomic or complex (decomposable) operation: action or sequence of actions, e.g

atomic actions in the domain ontology are 'order', 'check', 'supervise', etc. Each
atomic operation (e.g. ‘med order’) is described by objects that participate in its
execution (similarly to the object-like parameters that compose the operation
signature in programming languages);
object: entity, e.g. 'patient', 'medicament';
characteristic of an object (e.g. an attribute like 'patient age') or of an operation

(e.g. an object standing for the operation's determiner like in 'med order', 'pharmacy
check' or an operation attribute like in 'wrong order', 'failed check');
factor, element which impacts on the values of one/ more characteristics of an

object. Used only in the implementation of Taguchi method and represented only in
the domain ontology.

Ontology-based simple sentences
Basic elements (inspired from the syntax and semantics of natural language)

'object', 'operation', 'characteristic'- corresponding to 'nouns', 'verbs', 'adjectives' or 'adverbs' in NL
(universal/ existential) quantifiers and the plural of the objects;

the sentence unifies object-like concepts with different syntactic roles in the description (and
execution) of the main operation (verb) in the sentence.

Formal representation: a star (conceptual) graph with the linear form
(OPERATION) - an atomic operation, standing for the predicate in NL sentence
AGNT ∀[AGENT] - subject(s) in the active voice
PTNT ∃/∃?[Object_Type1:C/D{}] - direct object(s), i.e. the object(s) upon which OPERATION acts
RCPT ∃/∃?[Object_Type2:C/D{}] - indirect object(s), i.e. the recipients of the results of OPERATION
<preposition role> ∃/∃?[Object_Type3] - prepositional object(s);
<adverb role> ∃/∃?[Object_Type4] - adverbial modifier(s) (i.e. operation modifier);

where
nodes are objects or operations; and
links are roles, standing for ‘object-operation’ links or for links between active objects and the attributive
objects that describe them.

quantifiers: universal quantifier ∀ replaces the indefinite pronouns 'any', ‘all’, ‘every’, 'each' in NL; the two
existential quantifiers: ∃, meaning compulsory existence ('must exist') and ∃?, meaning optional existence
('may exist'), replace the definite or indefinite articles in NL;

plural: collective/ distributive denoted by C/ D{};

preposition and adverb roles with acronyms: RSLT (result), INST (instrument), LOC (location), SRC
(source), etc; with a preposition, conjunction, adverb as linguistic synonym; with disjunctive semantics (which
eliminates the ambiguities in NL).

Benefits: domain independent processing of the operations (code uses roles instead of domain-specific
types of objects/ attributes).

7

Special types of ontology-based simple sentences
Sentences around generic operators for:

semantic relations between objects/ operations (e.g. holonymy, hypernymy, synonymy, antonymy etc);
object definition using attributes or other objects;
dynamic qualification of objects or operations.

Sentences representing semantic relations in object and process representation
Noun meronymy/ holonymy Object fragmentation / aggregation
Noun hyponymy/ hypernymy Object specialization/ generalization
Noun synonymy Class synonymy (identical structures for classes with different names)
Noun antonymy Class antonymy (classes with opposite meanings)
Noun homonymy (identical form and different meanings) Class homonymy (same name, diff. structures)
Verb meronymy/ holonymy Functional decomposition / composition
Verb hyponymy/ hypernymy Functional specialization/ generalization
Verb synonymy Operation synonymy (identical functions for operations with different types / names)
Verb antonymy Functional antonymy (operations with opposite functions, e.g. that undo each other)
Verb homonymy Functional homonymy (operations with same name, but diff. functions polimorphism)
Verb troponymy (manner relation) Operation specialization (by the manner of action)
Verb entailment Functional, semantic, temporal entailment
Cause-effect relations between verbs Relation between an event and the operation it stimulates

Formal examples of sentences in PQI ontology

(Object_DEFINITION) - definition of Member
RCPT ∀ [MemberID]
NAME ∃[Member Name]
LOC ∃[Department: {Production /Marketing/...}]

(Operation_ENTAILMENT)
RCPT ∀(Diagram INTERPRETATION) -entailed
PTNT ∃(Diagram CREATION) -entailing oper.

(Object QUALIFICATION)
RCPT ∀[MemberID]
GOAL ∃ [Responsibility]

(Object_HOLONYMY)
DEST ∀[FlowChart] - whole
PART1 ∃[StartPoint] - part
PART2 ∃[Activity:C{}]
PART3 ∃[DecisionPoint:C{}]..

Logic of the ontology-based simple sentences

OPERATION = λ(xi1,…,xik) (xj1,…,xj(p-k)) (∀x1) (Object1(x1) ∧ role1 (x1)) ⊃
(∃x2)…(∃xp) (Object2(x2) ∧ role2(x2) ∧ … ∧ (Objectp(xp) ∨ NULL) ∧ (rolep(xp) ∨
NULL)) ∧ OPERATION(x1,…,xp)

λ-expression with (xi1,…,xik) (input/ output parameters) as bound variables
and a subset of objects (xi1,…,xik) ⊂ (x1,…,xp)

'role1' is usually AGNT (subject) and NULL helps for the representation of
the quantifier ∃? (‘may exist’).

Generic simple sentence for
operation description

(OPERATION)
role 1 ∀[Object1]
role 2 ∃[Object2] ……

role p ∃?[Objectp]

(∃a)(attributive_object_type(a)) ⊃
(∃o)(active_object_type(o))(PTNT(o)∧ ROLE(a))∧
Object QUALIFICATION(o,a)

where any attributive object ‘a’ necessarily qualifies an active object ‘o’
(that directly participates in an operation).

the attributive object can become active object in other circumstances (e.g.
the attribute 'medicene cost' for the object 'patient', used as quality
characteristic during the process analysis, can become the subject in the
sentence (idea) 'Medicine cost is too high').

Generic operator for object
(dynamic) qualification

(Object QUALIFICATION)
PTNT ∃[active_object_type]
ROLE ∃[attributive_object_type]

Defined_Object_TYPE= (λx) (x1,…,xn) (∀x)(Defined_Object_TYPE (x) ∧
RCPT(x)) ⊃(∃ x1) … (∃xn) (Object_Type1(x1) ∧ role1(x1))∧ … ∧

(Object_Typen (xn) ∨ NULL) ∧ (rolen (xn)∨ NULL)) ∧
Object_DEFINITION(x, x1,…,xn)

where ‘x’ is a bound variable

Generic operator for object
definition,
(Object_DEFINITION)

RCPT ∀ [Defined_Object_TYPE]
role1 ∃[Object_Type1] ….
rolen ∃?[Object_Typen]

8

Ontology-based compound/ complex sentences
Composition rules in NL

compound sentence joins independent simple sentences by coordinating conjunctions
(copulative, disjunctive, adversative, resultative, explanatory) or adverbs or asyndetically
(without conjunctions);
complex sentence correlates dependent (subordinated) sentences (clauses) to a main
sentence (clause) by subordinators like conjunctions, pronouns, adverbs, etc;
correlation between two verbs in two simple sentences by an anaphoric or generic reference,
introduced by the definite article or by a pronoun in the second sentence.

Composition rules in an ontology-based compound and complex sentence
Atomic/ complex operations in a process (and, implicitly, the simple sentences that describe them):

are correlated by inter-operation connectors (as intersentential relations):
E.g. for compound sentences, e.g. 'must', 'may', 'and', 'or', 'not', 'case', etc.
E.g., in a complex sentence, subordinating relations can be abstracted by 'if-then-else', 'dscr'
(description), 'goal', 'event', 'do', 'while', 'subordinating cause or result', 'then', 'case', 'spec'
(specialization), 'before', 'after', 'but' etc.

are preceded by operation modality (implicitly represented by the connectors 'must', 'may') and
operation pre-conditions;
the correlation between operations in two sentences is represented by a coreference that
correlates the coreferent concepts in two sentences (e.g. object IDs).

Use in PQI of rules and elements in compound sentences
Connectors, modality and pre-conditions are used for visual guidance and automatic verification of the user's
actions: checking operation precondition, operation obligativity, obligativity of the object selection before
operation execution, existance of the selected objects in the repository, etc;
Coreferences are used for representing the information flow in the PQI process, i.e. the transfer of
information (particular concepts in domain ontology, e.g.'Current Domain', 'Current Process', 'Current Object',
etc) between atomic PQI operations. These coreferences compose the working context.

(∀x) ((PO(x) ⊃ Oi1(x)) ∧ …∧ (PO(x) ⊃ Oin(x)))
(∀x)((PO(x)⊃(Oi1(x)∨ NULL))∧…∧(PO(x) ⊃ (Oin (x) ∨ NULL)))
(∀x) (((PO(x) ∧ condition) ⊃ (Oi1(x) ∨ NULL)) ∧…∧

((PO(x) ∧ condition)⊃ (Oin(x) ∨NULL)))
(∀x) ((PO(x) ⊃ O(x)) ∧ ¬ (O(x) ⊃ PO(x)))
(∀x) (¬(PO(x) ⊃ O(x)) ∧ (O (x) ⊃ PO (x)))
(∃x)((condition(x) ⊃O1(x))∧ (¬condition(x)⊃O2 (x)))
(∀x) (PO(x) ⊃ Oi1 (x) ∨ Oi2(x) ∨…∨ Oin (x))
(∀x)((PO(x)∧condition value1)⊃ Oi1(x)∨

(PO(x)∧condition value2)⊃ Oi2(x)∨ ...∨
(PO(x)∧ condition valuen)⊃Oin (x))

(∃x)((condition(x) ⊃O(x))∧ (¬condition(x) ⊃ NULL))
(∀x) (∃y) (PO (x) ⊃ PO (y)). - To avoid the infinite loops, NULL will be

instead of ‘y’ when the repetition ends.
(∀x) (∃y) (PO (x) ⊃ (PO (y) ∨ NULL)) - A procedural end of the repetition

that stops before PO expansion/ start.

(∀x) ((PO(x) ⊃ O(x)) ∧ (O(x) ⊃ PO(x)))
(∀x)((PO(x)⊃(O(x)∨ NULL)) ∧ (O(x)⊃(PO(x)∨ NULL)))
(∀x) ((PO (x) ⊃ ¬ O (x)) ∧ (O (x) ⊃ ¬ PO (x)))
(∀x) (¬ O (x)) - Execution negation. ‘x’ an input concept of O
(∀x) ((PO (x) ⊃ O (x)) ∧ (¬O (x) ⊃ ¬PO (x)))

(∀x)((∃e)EVNT(e) ⊃ O(x)), where
EVNT(e) = (λe)λ-definition(EO)[e] . ‘e’ is a particular event/ cause and

‘λ-definition (EO)’ is the λ-expansion of the event/ cause operation EO.

Modality PO MUST Oi1, …, Oin
PO MAY Oi1, …, Oin

PO (MAY ∧ condition) Oi1, …, Oin

Sequence PO THEN / BFOR O
PO AFTR O

Alternatives I F condition THEN O1/ ELSE O2
PO CASE Oi1, …, Oin

PO (CASE ∧ condition_value) Oi1…,Oin

Iteration WHILE condition DO O
PO MUST REPEAT

PO MAY REPEAT

Logical Relations PO AND O
PO OR O
PO XOR O

NOT O
Motivation PO GOAL O

Stimulation/ Cause EO EVNT / CAUS O

Logic of interoperation connectors

NOTE x - an individual of an output object type in the premise operation, transferred to its child operations;
⊃ compulsory activation of the implied operations; ∧ conjunction of the operations or rules; ∨ (exclusive or not)
disjunction of operations or rules; NULL is a null (ineffective) operation.

9

PQI Process (General Scenario of the PQI methodology)

(composed-of) Steps in scenario (as Complex Operations)
(composed-of) Atomic operations

Atomic Operations
(described-by) Objects

(described-by) Characteristics (attribute) of the objects
Characteristic (attribute) of Operation

PQI process is described by a general scenario, composed of PQI steps (complex operations).
the steps are further composed of complex or atomic operations.
each atomic operation is described by objects which participate in its execution. Similarly to:

parameters in operation signature in programming languages;
nouns which describe the action of a verb in natural language.

the objects are described by their characteristics (attributes);
the steps and operations are controlled by pre-conditions and inter-operation connectors that

state their sequential or parallel execution, obligatory or optional execution, alternation, repetition,
etc (e.g connectors like 'must', 'may', 'case', 'must repeat', etc).

steps and atomic operations are preceded by their modality;
attributes of operations are 'name', 'description', 'type', 'form name', 'help', etc.
attributes of objects are 'name', 'description', 'form name', 'retrieval condition (where condition)',

'predefined table/ query in the repository', 'help', etc.

Types of concepts and relationships in PQI ontology

Types of concepts and relationships in domain ontology

Process in domain

(composed-of) Complex Operations in process
Atomic Operations in process

(described-by) Objects in operation (and in domain)
(described-by) (Quality) Characteristics (attribute) of the objects

(impact-on) Factors
Characteristic (attribute) of Operation

description of the domain-specific process implicitly refers to descriptions of the component
(complex or atomic) operations;

description of the atomic operation unifies the objects involved in the operation execution
objects are described by their characteristics (mainly, the characteristics which are subject to

analysis).
the values of one or more characteristics of an object depend on certain (controllable/

uncontrollable) factors in the process (e.g. temperature, composition consistency, humidity, etc)
attributes of the operations are specified in the domain ontology and, also, in the process

flowchart (e.g operation goal, precondition, responsible person, if the operation is selected for data
collection, etc).

in the domain ontology, the user is also allowed to specify synonymy relationships, between
operations or between objects, used for the comparison of the ideas collected from the members of
the team.

10

Benefits from a DBMS for PQI automation
DBMS helped:

For building the infrastructure for both ontologies in the same database, with benefits for:
integration of PQI ontology with the domain ontology (needed, for instance, when the execution of

certain PQI steps depends on results of previous steps, results stored in the domain ontology);
integration of the PQI-specific tools (operations for the creation of diagrams, data collection sheets,

statistical analyses, etc) which share concepts in the domain ontology;
retrieval of the objects and operations in the user interface by means of preconditions explicitly

defined in the PQI ontology, dynamically customized with domain-specific concepts in the working
context (current project, domain, process, operation, object, etc), selected by the user;

With mechanisms for concept management (insert, delete, update, select), for concept
correlation, for assuring the ontology consistency and physical integrity;

Relational DBMS for PQI system implementation
Microsoft Access in cooperation with other tools in MS Office (Word, Excel, OutLook Express) and

with NetMeeting. Benefit: widely spread Windows platforms without additional costs for
using the PQI system.
Repository for storing ontologies, predefined objects for PQI (infrastructures for diagrams,

ideas collection, structures for experiments), domain-specific objects (diagrams, matrices,
ideas);
Reasoning (in macros and Visual Basic for applications) based on PQI&domain ontologies for:

dynamic creation of the system interface;
guidance and verification of the user’s actions;
dynamic creation of the schema for data collection sheets and for experiment matrices;
comparison and grouping of the ideas;
statistical analysis of the collected data;
comparison and concatenation of the process flowcharts;
customization of the PQI assistant, depending on the members’ roles in the team, etc.

Implementation platform. Team of PQI assistants
The system can be used stand-alone or in a virtual team of PQI assistants

PQI Assistant

- PQI and domain ontologies
- PQI objects (predefined models for
diagrams/ structures, infrastructure for
domain ontology)
- domain/ process specific objects
(e.g diagrams, sheets, matrices, etc)
created based on:

user's choices (e.g. sheets, matrices)
predefined models (e.g. diagrams,

structures for ideas collection)

Access DB

User interface
- Define/ Open PQI project
- Forms dynamically created based on PQI
ontology for TQM and Taguchi method
- Predefined/ user defined objects
- Graphical charts

PQI Assistant

- PQI and domain ontologies
- PQI objects (predefined models for
diagrams/ structures, infrastructure for
domain ontology)
- domain/ process specific objects
(e.g diagrams, sheets, matrices, etc)
created based on:

user's choices (e.g. sheets, matrices)
predefined models (e.g. diagrams,

structures for ideas collection)

Access DB

User interface
- Define/ Open PQI project
- Forms dynamically created based on PQI
ontology for TQM and Taguchi method
- Predefined/ user-defined objects
- Graphical charts

Ontology-based Reasoner
(Visual Basic for Applications, macros in
MS Access)

Ontology manager

Ontology-based Reasoner
(Visual Basic for Applications, macros in
MS Access)

Ontology manager

Communication
by structures

11

Ontology manager
an intrinsic component of the PQI assistant
it facilitates:

dynamic creation of the system interface, based on PQI ontology;
definition, navigation, extension of the domain ontology;
automatic classification and retrieval of the domain-specific concepts, according to the
working context;
communication between the members of the team, relying on PQI and domain ontologies;
correlation, comparison and inference on members' ideas expressed using concepts in the
domain ontology

PQI
Assistant

PQI
Assistant

PQI Assistant

Domain and PQI
ontologies

Ontology managermember
member

leader and mediator
of the team

Using a relational DBMS for managing sentences based on
PQI and domain ontologies

Part of compound sentence describing the PQI process (general scenario)

12

Compound sentence describing the PQI operation ‘ Step 4 – Create AS-IS Process Diagram’

Simple sentence for the description of the PQI operation 'add/modify/delete AS-IS flowchart'

Simple sentence describing the domain operation 'Med order‘(in ‘Medicament administration’
domain)(schema of next table is in PQI ontology describing the PQI object ‘Domain Operation”)

13

Simple sentence describing the domain object ‘Flowchart’ as instance of the PQI object
‘Flowchart for current AS-IS process’ whose attributes are columns in the next table.

Compound sentence representing ideas in a cause-effect diagram with objects and
operations (with capital letters) in the domain ontology. It is an instance of the PQI object
'Cause-Effect diagram'

Benefits from ideas expression using ontology-based sentences:
•users have a common vocabulary and are forced to focus on the most relevant aspects and concepts in the
domain and process.
•ideas can be automatically compared and grouped (at least by matching concepts with same syntactic role
(subject, predicate, complement)).

14

Dynamic creation of a data collection sheet
Selection of characteristics describing the object 'patient' in the domain ontology

(quality characteristic is 'medicine cost‘)

Schema of above table is defined in PQI ontology for PQI object “Domain Object”

Dynamic creation of the sheet

Checking the Process Stability using Run Chart
Creation of run chart or control chart using the data on the analysed characteristic,

collected in a previously created and filled sheet. The charts represent the evolution
in time of the analyzed characteristic.

Runchart reveals the existance of special causes for process instability when trends,
runs (consecutive values on one side of the centerline (median)) or cycles (repeating
patterns) appear.

Example
Object 'Patient‘
Characteristics: 'Month' as time interval and 'Days_in_hospital' as controlled characteristic

15

Checking the Process Stability using Control Chart
With control chart, the causes of the process instability can be further controlled by

control limits (three standard deviations from centerline); and
rules for the interpretation of the values falling outside the control limits.

The software allows the representation of:
X-Bar and R charts for variable data and sample size between 2 and 15;
Individual X and Moving Range charts for attribute (count) data or variable data with
sample size 1.

Example of XBar and R charts for variable data and sample size between 2 and 15
Object 'Patient'
Characteristics: 'Month' as time interval, 'Hospital_department' as generic name of the

sample and 'Medicine_cost' as controlled characteristic

Checking the Process Improvement Ability using Histograms
Histograms (charts with vertical bars) for the analysis of a quality characteristic.
A histogram shows:

where the values for a characteristic (e.g 'Days_in_hospital') fall in a measurement scale;
how much is the variation.

Example of histogram
Object 'Patient'
Characteristic 'Days_in_hospital'
The histogram allows the comparison of the values with the specification limits (e.g. minimum

1 day and maximum 40 days) and with the target value (e.g. 5 days) for the analysed
quality characteristic

16

Identification of the Causes for Process Instability using
Pareto chart

Pareto chart represents the categories of problems by bars, whose heights reflect the
frequency or impact of the respective type of problems (number of times each
category of problems occurs).
Pareto principle postulates that 80% of troubles comes from 20% of problems.
The tallest bars indicate the most important problems that must be analysed using
cause-effect diagram.

Example
Object 'Patient' in the domain "Medicament administration in hospital".
Characteristics: 'Complaint_Type' as category name, 'Month' as generic name of the sample

and 'No_Complaints' as controlled characteristic
Computation type is 'Total' (among 'Total', 'Percentage', 'Sum_of_Percent', 'One sample')

Brainstorming Sessions
users express ideas (in NL or ontological sentences) on any subject and PQI step.

the ideas expressed by ontological sentences can be automatically grouped by
matching concepts with same syntactic role (subject, predicate, complement),
resulting into the affinity diagram.

Example of affinity diagram for the ideas in the cause-effect diagram

the members can express their vote on the final list of ideas and the mediator calls
the multivote function, that automatically calculates the vote per idea (complex
sentence) or sequence of idea (simple sentence).

17

Part of affinity diagram grouping ideas in the cause-effect
diagram (according to a syntactic comparison algorithm)

Conclusions

the developers of applications can benefit from ontologies for both:
description of the business (e.g. ‘medicament administration'), but also for
description of the applications (e.g. a PQI system) and for their interfaces. Most part of the
code for the application interface can be reused for other applications, by changing/
extending the application ontology.

the use of a relational DB for the representation of the process-oriented ontologies
(i.e. for the composition of controlled sequence of operations, for the description of
objects and operations in the process) was possible because of the natural
representation in relational DBs of the conceptual graphs, the inspiration source for
the ontology-based sentences;

benefits for PQI system from the proposed process-oriented representation:
conceptual integration of ontologies describing both PQI system and analyzed process,
using the same types of concepts and a uniform representation for both ontologies.

It saves the user’s time for system learning, because the same representation was for both
user interface and the infrastructure for the analyzed process (defined by the user)

integration of operation/ process and object descriptions and of the semantic relationships
between processes/ operations/ objects.

most ontology languages do not have explicit representation capabilities for processes;
symbolic models do not allow the explicit integration of processes and objects (they propose
separate diagrams for objects and processe, integrated in the programming code);

18

Conclusions (cont)
benefits for PQI system from the proposed process-oriented representation (cont):

natural extensibility of the application and business ontologies, using the same conceptual
background

application ontology can be extended or new application ontologies can be integrated with the
existing ones (e.g. first the ontology for TQM and, then, for the integration of the Taguchi method);
an initial domain ontology can be extended with other domains, analyzed using the same PQI
software and repository (e.g. TQM tested for 'medicament administration' and Taguchi method for
the 'manufacturing' domain).

code reusability.
interface for both methodologies (TQM and Taguchi) is dynamically built using the same reasoning
algorithm, but different concepts in the PQI ontology.
same algorithm for the automatic guidance and verification of the user's actions throughout both
methodologies.
the two methodologies share:

ontology manager and the infrastructure (predefined in PQI ontology) for the domain ontology.
the utility steps (for scenario customization, project scheduling and brainstorming).

Only the specific functions of the Taguchi operations (e.g. specific computations) have been be
added to the existing code for TQM.

domain-independent processing of the ontology-based sentences
activities and processes described, integrated and stored outside the code can be reused and
customized for other applications and can be processed using a general algorithm.

technology-independent representation (see example in XML)

Part of the representation in XML of the ‘PQI process’
<OPERATION Type="process" Name="PQI process“>

……
<OPERATION Type= "step" Name=" Step 4 – Create AS-IS Process Diagram"

Quantif="must exist" Precondition ="“>
……
<OPERATION Type="atomic" Name="Add/ Modify/ Delete AS-IS flowchart"

Quantif="may exist" Precondition ="“>
<OBJECT Name="Current Domain" Quantif = "must exist" Role="LOC" Value="“>

<ATTRIBUTE Type="Description" Quantif="may exist" Role="CHRC" Value=""/>
<ATTRIBUTE Type="PQI Project" Quantif="must exist" Role="LOC" Value=""/>

</OBJECT>
…..

<OBJECT Name="Flowchart for current AS-IS process"
Quantif = "must exist" Role="PTNT" Value="“>

<ATTRIBUTE Type="Domain Process" Quantif="must exist" Role="PTNT" Value=""/>
<ATTRIBUTE Type="Operation in process" Quantif="must exist"

Role="PART" Value=""/>
…….

</OBJECT>
…..

<ATTRIBUTE Type="Operation State" Quantif="must exist" Role="STAT" Value=""/>
</OPERATION >

……
</OPERATION >
……

</OPERATION >

