Ontology-driven Improvement of Business Process Quality

Alexandra Galatescu Taisia Greceanu National Institute for R&D in Informatics 8-10 Averescu Avenue, 011455, Bucharest, ROMANIA {agal, gresta}@ici.ro

Content

Introduction and Motivation

- Application: Process Quality Improvement (PQI)
- Methodologies for PQI: TQM (Total Quality Management) methodology and Taguchi method
- Limits and unsolved problems in the software tools for PQI using TQM and Taguchi method

Ontology-based Representation of PQI and Domain Processes

- Types of ontologies for PQI. Benefits from ontologies for PQI
- Ontology integration in the PQI system
- Limits of the existing ontology languages and editors for process representation
- Types of concepts and relationships in a process-oriented upper-level ontology
- Ontology-based sentences (representation, logic, benefits)
- Types of concepts and relationships in PQI and domain ontologies

Managing Process-oriented Ontologies in a Relational Database

- Benefits from a DBMS for PQI automation
- Examples for the representation of ontological sentences in a relational database
- Benefits for the PQI system from the process-oriented ontologies

Conclusions

Application: Process Quality Improvement (PQI) A continuous and incremental analysis and improvement of the processes and work flows within and between organizations (vertical (hierarchical) processes or horizontal) A less radical reengineering of the enterprise processes; A team-based process (members have different specializations: management, technical, economic, marketing, human resources, etc.). Motivated by: Discrepancy between the customers' requirements and the offered products or services, Instability of the enterprise processes, Requirements for new types of products, High costs of the activity/ production, Too many losses, Low productivity, etc.

Limits and unsolved problems in existing software for PQI

Software products for PQI

Pathmaker (SKYMARK), Memory Jogger (GOALQPC), Solutions-PROSPER and PRO-QMS (DSS Infotech), Qualitek (NUTEK), Microsoft Visio, DataLyzer Spectrum (Stephen Computer Services, USA), SQCpack (Quality Management Products, Canada), ECHIP (ECHIP Inc.), JMP (SAS Institute Inc.), knowledge bases with "how-to", guidebooks, tool libraries, etc.

Limits and unsolved problems

- they do not provide guidance and the users must be specialists in TQM, Taguchi method and mathematical statistics;
- the users have to manage symbols with an informal semantics that cannot be compared or transferred between different types of diagrams and structures;
- **u** they do not allow the description and automatic use of *explicit correlations between*
 - > the activities and the objects which describe them or participate in their execution.
 - > objects and their quality characteristics (which are statistically analyzed).

These correlations are supposed to be in the user's mind and cannot be stored and automatically analyzed.

- they do not encourage the use of a common vocabulary between the members of the team (usually, with different specializations). The ideas are collected in natural language and cannot be automatically compared. To reach a final decision, many (virtual) discussions are needed.
- they implement either TQM methodology or Taguchi method. There is no tool which integrates them both.

Ontology languages and editors for process representation

Existing applications of process-oriented ontologies:

- for enterprise process management;
- □ lately, for managing Web service-oriented processes.

Not satisfied requirement for enterprise process representation: representation of:

- □ the enterprise dynamics (changes/ improvements of enterprise processes)
- D enterprise integration and interoperability (organizational, technological, informational, etc)

Limits of the existing ontology languages and editors:

- □ same orientation as most conceptual models: most of them are object-oriented:
 - ➔ only object (entity)-like concepts;
 - → explicit relationships only <u>between objects and attributes</u>,
 - → only explicit specialization/ generalization relationships between objects (→ inheritance);
 - →relationships between objects and events upon them (encoded methods);

□ ontology editors and management tools (e.g. Protégé, OilEd, OntoBroker/ OntoEdit, KAON, Ontolingua, OntoWeb, OntoSaurus, etc) are <u>not process-oriented</u>, i.e.

→ without semantic <u>separation of the process and activity-like concepts</u> from the <u>object (entity)-like</u> <u>concepts</u> involved in the process execution (it is usually encoded)

→ no capability for the explicit representation, decomposition and interpretation of the processes and activities → designers should devise their own types of concepts and relationships for process description (possibly, complying with a process-oriented language (e.g. PSL, BPEL, etc))

→ no reasoner and management functionality for processes (should be built by the developer)

<u>Recommended business process ontology</u>: PSL (Process Specification Language) (initiated by NIST-National Institute of Standards and Technology), because it can be logically integrated with KIF (Knowledge Interchange Format) (for knowledge description and exchange).

Types of concepts and relationshi	ps in the upper-level
ontology	
Process (composed-of) Complex Operations (composed-of) Atomic operations (composed-of) Atomic Operations	→ new concept and relationship
(described-by) Objects	 → relationship outside the code t) Characteristics (attributes) s) of Operation (e.g state)
Conceptual models Conceptual models and ontology languages Proposed represen	tation
Additional information in conceptual models and in prope	osed upper-level ontology
sequential order and preconditions of the atomic operations	s in a process;
New elements in the process representation using the up	per-level ontology
explicit correlation of atomic operations and objects in description structures), inspired from the syntax of the simple	
complex operations which:	
compose the process and are composed of atomic operations	;
 <u>difference from subprocess</u>: are represented by ontology-base compound/ complex sentence in natural language; 	ed sentences, inspired from the syntax of the
atomic/ complex operations are preceded by their 'modality	<u>y'</u> ('must', 'may') and by 'pre-conditions' <i>;</i>
□ in a complex operation, the atomic operations are correla 'case', 'then', 'must repeat', etc),), which can be used for the	
NOTE PQI and domain ontologies differ by the instances of t processes, operations, objects, characteristics).	hese basic concept types (by particular

Ontolog	y-based simple sentences
 <u>'object', 'operation', 'character</u> (universal/ existential) <u>quantit</u> 	ect-like concepts with different syntactic roles in the description (and
Formal representation: a star (co	onceptual) graph with the <u>linear form</u>
(OPERATION) AGNT ∀[AGENT] PTNT ∃/∃?[Object_Type ₁ :C/D{}] RCPT ∃/∃?[Object_Type ₂ :C/D{}] <preposition role=""> ∃/∃?[Object_Type₃] <adverb role=""> ∃/∃?[Object_Type₄]</adverb></preposition>	 an atomic operation, standing for the <u>predicate</u> in NL sentence <u>subject(s)</u> in the active voice <u>direct object(s)</u>, i.e. the object(s) upon which OPERATION acts <u>indirect object(s)</u>, i.e. the recipients of the results of OPERATION <u>prepositional object(s)</u>; <u>adverbial modifier(s)</u> (i.e. operation modifier);
where	
 nodes are objects or operations; a 	nd
	ct-operation' links or for links between active objects and the attributive
	replaces the indefinite pronouns 'any', 'all', 'every', 'each' in NL; the two compulsory existence ('must exist') and \exists ?, meaning optional existence indefinite articles in NL;
D plural: collective/ distributive denoted	ted by C/ D{};
	with <u>acronyms</u> : RSLT (result), INST (instrument), LOC (location), SRC injunction, adverb as <u>linguistic synonym;</u> with <u>disjunctive semantics</u> (which
→ Benefits: domain independent types of objects/ attributes).	t processing of the operations (code uses roles instead of domain-specific

Special types of ontology-based simple sentences

Sentences around generic operators for:

- □ <u>semantic relations</u> between objects/ operations (e.g. holonymy, hypernymy, synonymy, antonymy etc);
- <u>object definition</u> using attributes or other objects;
- dynamic qualification of objects or operations.

Sentences representing semantic relations in object and process representation

- □ Noun meronymy/ holonymy → Object fragmentation / aggregation
- □ Noun hyponymy/ hypernymy →Object specialization/ generalization
- □ Noun synonymy → Class synonymy (identical structures for classes with different names)
- □ Noun antonymy → Class antonymy (classes with opposite meanings)
- □ Noun homonymy (identical form and different meanings) → Class homonymy (same name, diff. structures)
- □ Verb meronymy/ holonymy → Functional decomposition / composition
- □ Verb hyponymy/ hypernymy → Functional specialization/ generalization
- □ Verb synonymy → Operation synonymy (identical functions for operations with different types / names)
- □ Verb antonymy → Functional antonymy (operations with opposite functions, e.g. that undo each other)
- □ Verb homonymy → Functional homonymy (operations with same name, but diff. functions → polimorphism)
- □ Verb troponymy (manner relation) → Operation specialization (by the manner of action)
- □ Verb entailment → Functional, semantic, temporal entailment
- □ Cause-effect relations between verbs → Relation between an event and the operation it stimulates

Formal examples of sentences in PQI ontology

(Object_HOLONYMY)	(Operation_ENTAILMENT)	(Object_DEFINITION) - definition of Member
DEST V[FlowChart] - whole	RCPT ∀(Diagram INTERPRETATION) -entailed	RCPT ∀ [MemberID]
PART1 ∃[StartPoint] - part	PTNT ∃(Diagram CREATION) -entailing oper.	NAME ∃[Member Name]
PART2 ∃[Activity:C{}]	(Object QUALIFICATION)	LOC 3[Department: {Production /Marketing/}]
PART3 ∃[DecisionPoint:C{}]	RCPT ∀[MemberID]	
	GOAL ∃ [Responsibility]	

Logic of the	e ontology-based simple sentences
$\begin{array}{c} \underline{\textbf{Generic simple sentence for}}\\ \underline{\textbf{operation description}}\\ (\textbf{OPERATION})\\ role_1 \forall [Object_1]\\ role_2 \exists [Object_2] \dots \\ role_p \exists ? [Object_p] \end{array}$	$\begin{array}{l} \text{OPERATION} = \lambda(x_{i_1},\ldots,x_{i_k}) \; (x_{j_1},\ldots,x_{j_{(p-k)}}) \; (\forall x_1) \; (\text{Object}_1(x_1) \wedge \text{role}_1(x_1)) \supset \\ (\exists x_2) \ldots (\exists x_p) \; (\text{Object}_2(x_2) \wedge \text{role}_2(x_2) \wedge \ldots \wedge (\text{Object}_p(x_p) \vee \text{NULL}) \wedge (\text{role}_p(x_p) \vee \text{NULL})) \wedge \text{OPERATION}(x_1,\ldots,x_p) \\ \\ \geqslant \lambda \text{-expression with } (x_{i_1},\ldots,x_{i_k}) \; (\text{input/ output parameters}) \; \text{as bound variables} \\ \text{and a subset of objects } (x_{i_1},\ldots,x_{i_k}) \subset (x_1,\ldots,x_p) \\ \\ \geqslant \text{'role1' is usually AGNT (subject) and NULL helps for the representation of} \\ \text{the quantifier } \exists ? \; (\text{'may exist'}). \end{array}$
Generic operator for object (dynamic) qualification (Object QUALIFICATION) PTNT ∃[active_object_type] ROLE ∃[attributive_object_type]	 (∃a)(attributive_object_type(a)) ⊃ (∃o)(active_object_type(o))(PTNT(o)∧ ROLE(a))∧ Object QUALIFICATION(o,a) > where any attributive object 'a' necessarily qualifies an active object 'o' (that directly participates in an operation). > the attributive object can become active object in other circumstances (e.g. the attribute 'medicene cost' for the object 'patient', used as quality characteristic during the process analysis, can become the subject in the sentence (idea) 'Medicine cost is too high').
Generic operator for object definition, (Object_DEFINITION) RCPT ∀ [Defined_Object_TYPE] role1 ∃[Object_Type₁] rolen ∃?[Object_Typeₙ]	$\begin{array}{l} \text{Defined_Object_TYPE=} (\lambda x) \ (x_1, \ldots, x_n) \ (\forall x)(\ \text{Defined_Object_TYPE} \ (x) \land \\ \text{RCPT}(x) \) \supset (\exists \ x_1) \ \ldots \ (\exists x_n) \ (\text{Object_Type}_1(x_1) \land \text{role}_1(x_1) \) \land \ \ldots \land \\ (\text{Object_Type}_n \ (x_n) \lor \text{NULL}) \land (\text{role}_n \ (x_n) \lor \text{NULL})) \land \\ \text{Object_DEFINITION}(x, \ x_1, \ldots, x_n) \\ \geqslant \ \text{where} \ 'x' \ \text{is a bound variable} \end{array}$

Ontology-based compound/ complex sentences

Composition rules in NL

- □ compound sentence joins independent simple sentences by <u>coordinating conjunctions</u> (copulative, disjunctive, adversative, resultative, explanatory) or <u>adverbs</u> or <u>asyndetically</u> (without conjunctions);
- □ *complex sentence* correlates dependent (subordinated) sentences (clauses) to a main sentence (clause) by <u>subordinators like conjunctions, pronouns, adverbs</u>, etc;
- □ correlation between two verbs in two simple sentences by an <u>anaphoric or generic reference</u>, introduced by the definite article or by a pronoun in the second sentence.

Composition rules in an ontology-based compound and complex sentence

Atomic/ complex operations in a process (and, implicitly, the simple sentences that describe them): are correlated by <u>inter-operation connectors</u> (as *intersentential relations*):

- > E.g. for <u>compound sentences</u>, e.g. 'must', 'may', 'and', 'or', 'not', 'case', etc.
- E.g., in a <u>complex sentence</u>, subordinating relations can be abstracted by 'if-then-else', 'dscr' (description), 'goal', 'event', 'do', 'while', 'subordinating cause or result', 'then', 'case', 'spec' (specialization), 'before', 'after', 'but' etc.
- are preceded by <u>operation modality</u> (implicitly represented by the connectors 'must', 'may') and <u>operation pre-conditions;</u>
- □ the correlation between operations in two sentences is represented by a <u>coreference</u> that correlates the <u>coreferent concepts</u> in two sentences (e.g. object IDs).

Use in PQI of rules and elements in compound sentences

- Connectors, modality and pre-conditions are used for visual guidance and automatic verification of the user's actions: checking operation precondition, operation obligativity, obligativity of the object selection before operation execution, existance of the selected objects in the repository, etc;
- Coreferences are used for representing the <u>information flow</u> in the PQI process, i.e. the transfer of information (particular concepts in domain ontology, e.g. Current Domain', 'Current Process', 'Current Object', etc) between atomic PQI operations. These coreferences compose the <u>working context</u>.

Modality	PO MUST Oi ₁ ,, Oi _n	$(\forall x) ((PO(x) \supset Oi_1(x)) \land \land (PO(x) \supset Oi_n(x)))$
	PO MAY Oi ₁ ,, Oi _n	$(\forall x)((PO(x) \supset (Oi_1(x) \lor NULL)) \land \land (PO(x) \supset (Oi_n(x) \lor NULL)))$
PO (MA	Y ^ condition) Oi ₁ ,, Oi _n	$(\forall x)$ (((PO(x) \land condition) \supset (Oi ₁ (x) \lor NULL)) $\land \dots \land$
		((PO(x) ∧ condition)⊃ (Oi _n (x) ∨NULL)))
Sequence PO	THEN / BFOR O	$(\forall x) ((PO(x) \supset O(x)) \land \neg (O(x) \supset PO(x)))$
	PO AFTR O	$(\forall x) (\neg (PO(x) \supset O(x)) \land (O(x) \supset PO(x)))$
Alternatives IF cond	dition THEN O1/ ELSE O2	$(\exists x)((condition(x) \supset O_1(x)) \land (\neg condition(x) \supset O_2(x)))$
	PO CASE Oi ₁ ,, Oi _n	$(\forall x) (PO(x) \supset Oi_1(x) \lor Oi_2(x) \lor \dots \lor Oi_n(x))$
PO (CASE 🔥 C	condition_value) Oi1,Oin	(∀x)((PO(x)∧condition value₁)⊃ Oi₁(x)∨
		(PO(x)∧condition value ₂)⊃ Oi ₂ (x)∨∨
		(PO(x)∧ condition value _n)⊃Oi _n (x))
Iteration	WHILE condition DO O	$(\exists x)((condition(x) \supset O(x)) \land (\neg condition(x) \supset NULL))$
	PO MUST REPEAT	(∀x) (∃y) (PO (x) ⊃ PO (y)) To avoid the infinite loops, NULL will be instead of 'y' when the repetition ends.
	PO MAY REPEAT	($\forall x$) ($\exists y$) (PO (x) \supset (PO (y) \lor NULL)) - A procedural end of the repetition that stops before PO expansion/ start
Logical Relations	PO AND O	$(\forall x) ((PO(x) \supset O(x)) \land (O(x) \supset PO(x)))$
	PO OR O	(∀x)((PO(x)⊃(O(x)∨ NULL)) ∧ (O(x)⊃(PO(x)∨ NULL)))
	PO XOR O	(∀x) ((PO (x) ⊃ ¬ O (x)) ∧ (O (x) ⊃ ¬ PO (x)))
	NOT 0	$(\forall x) (\neg O(x))$ - Execution negation. 'x' an input concept of O
Motivation	PO GOAL O	$(\forall x) ((PO (x) \supset O (x)) \land (\neg O (x) \supset \neg PO (x)))$
Stimulation/ Cause	EO EVNT / CAUS O	(∀x)((∃e)EVNT(e) ⊃ O(x)), where
		EVNT(e) = (λ e) λ -definition(EO)[e] 'e' is a particular event/ cause and ' λ -definition (EO)' is the λ -expansion of the event/ cause operation EO.

Benefits from a DBMS for PQI automation

DBMS helped:

□ For building the <u>infrastructure for both ontologies</u> in the same database, with **benefits** for:

→ integration of PQI ontology with the domain ontology (needed, for instance, when the execution of certain PQI steps depends on results of previous steps, results stored in the domain ontology);

→ integration of the PQI-specific tools (operations for the creation of diagrams, data collection sheets, statistical analyses, etc) which share concepts in the domain ontology;

→ retrieval of the objects and operations in the user interface by means of *preconditions* explicitly defined in the PQI ontology, *dynamically customized* with domain-specific concepts in the working context (current project, domain, process, operation, object, etc), selected by the user;

□ With mechanisms for <u>concept management</u> (insert, delete, update, select), for <u>concept</u> <u>correlation</u>, for assuring the <u>ontology consistency</u> and <u>physical integrity</u>;

Relational DBMS for PQI system implementation

Microsoft Access in cooperation with other tools in MS Office (Word, Excel, OutLook Express) and with NetMeeting. <u>Benefit</u>: widely spread Windows platforms → without additional costs for using the PQI system.

- Repository for storing <u>ontologies</u>, <u>predefined objects for PQI</u> (infrastructures for diagrams, ideas collection, structures for experiments), <u>domain-specific objects (diagrams, matrices, ideas)</u>;
- Reasoning (in macros and Visual Basic for applications) <u>based on PQI&domain ontologies</u> for:
 dynamic creation of the system interface;
 - guidance and verification of the user's actions;
 - dynamic creation of the schema for data collection sheets and for experiment matrices;
 - □ comparison and grouping of the ideas;
 - □ statistical analysis of the collected data;
 - comparison and concatenation of the process flowcharts;
 - customization of the PQI assistant, depending on the members' roles in the team, etc.

-		S for managing sentences based on domain ontologies
Part of compound sentence	lescribi	ing the PQI process (general scenario)
ck Condition	Mode	Operation Name
	MAY	Customize Scenario for Process Quality Management
	MAY	Project Scheduling
	MAY	Brainstorming Session
	MAY	BUSINESS PROCESS IMPROVEMENT BY TQM
	MUST	Step 1 - Organize BPR Team
	MUST	Step 2 - Create/ Modify/ Delete Domain and Process Definitions
	MUST	Step 3 - Create Objects and Characteristics in process
	MUST	Step 4 - Create AS-IS Process Diagram
	MUST	Step 5 - Plan Data Collection for the current AS-IS Process
	MUST	Step 6 - Check Stability of current AS-IS Process
Process stable	MUST	Step 7 - Check Improvement Ability of current AS-IS Process
Process unstable or unable of improveme	MAY	Step 8 - Identify Root Cause for current AS-IS Process
	MUST	Step 9 - Create and Implement current TO-BE Flowchart Diagram
	MUST	Step 10 - Plan Data Collection for the current TO-BE Process
	MAY	Step 11 - Test Changes, Create Implementation Plans
	MUST	Step 12 - Check Stability of the current TO-BE Process
Process stable	MUST	Step 13 - Check Improvement Ability of the current TO-BE Process
	MAY	Step 14 - Standardize the current TO-BE Process
	MAY	TAGUCHI EXPERIMENTS
	MUST	Organize the Team for Experiments
	MUST	Define/ Select Domain and Process
	MUST	Define/ Select Objects and Characteristics
	MAY	Define problems to solve
	MUST	PLAN Experiments (factors, interactions, conditions)
	MUST	DESIGN Experiments
	IMAN V	CONDUCT (Execute) Experimente

Compound sente	<u>nce</u> describir	ng the <u>P</u>	QI operation ' Step 4 – Create AS-IS Process Diagram'			
rent Project:	Current Doma	ain:	Current Process: Current Activity: Cu			
ulth care	Medicament	administra	ation Med Administer			
ck Condition		Mode	Operation Name			
		MUST	SELECT current Domain and Process			
		MAY	MANAGE Structure			
Selected AS-IS proces	s	MAY	Add/ Modify/ Delete the Flowchart for current AS-IS Proc			
Selected Flowchart		MAY	Interpret Flowchart			
Selected AS-IS and TC	-BE process	MAY	Flowchart comparison			
Selected domain and p	rocess	MAY	Create final flowchart and merge with it a collected flowc			
Selected process		MAY	Replace flowchart for current AS-IS process with the flo			
		MAY	Replace/Delete structures with ideas/ diagrams			
			VIEW Structure			
Selected AS-IS proces	s	MAY	VIEW the Flowchart for the current AS-IS Process			
		MAY	VIEW a selected flowchart (previously created)			
Selected structure		MAY	VIEW a structure with flowchart (identified by the name o			
		MAY	VIEW results from flowchart comparison			
		MAY	EXPORT / IMPORT Structures			
Existing export structure	!	MAY	Prepare Send Ideas/ Diagram (create Excel file)			
Existing Excel file		MAY	Send/ Receive definitions/ structures (call OutLook Exp			
Existing Excel file		MAY	Collect and view definitions/ structures (from Excel files)			

Simple senter	nce for the o	description o	f the <u>PQI op</u>	eration 'add/	modify/dele	te AS-IS i	flowchart'
Add/ Modify/ Delete A	S-IS Flowchart						
	Current Domain: Medicament administra	Current Process: Med Administer	Current Activity:	Current Object:	Current Inspection	n Sheet/ Structure/	/ Matrix:
Operation	Name		Obje	ct Name		Object Quantifie	r Execute
Add/ Modify/ Delete AS	i-IS Flowchart	 Current Do 	omain			MUST EXIST	Select
Add/ Modify/ Delete AS	-IS Flowchart	Current Pr	ocess			MUST EXIST	Select
Add/ Modify/ Delete AS	-IS Flowchart	✓ Flowchart	General Description			MUST EXIST	Add/Modify/Delete
Add/ Modify/ Delete AS	-IS Flowchart	✓ Flowchart	for current AS-IS pro	cess		MAY EXIST	Add/Modify/Delete
Add/ Modify/ Delete AS	-IS Flowchart	 Graphical 	view of the current f	owchart		MAY EXIST	View
Add/ Modify/ Delete AS	-IS Flowchart	Extracted	Flowchart for the cu	rent process		MAY EXIST	Save
Simple senter domain)(scher Current Project	ma of next ta Current D	ble is in PQI of Iomain:	Current Process:	Cribing the PQ Current A	I object 'Don Activity:		ation")
Health care	Medicarr Operation Type	nent administration	Med Administer	Med Ord	er Object Quar	litifier Ob	ject Plural
Medicament admini	- Med Order				• MUST EXIS	T just	tone
Medicament admini	 Med Order 		Medicament		- MUST EXIS	T _ sev	veral together
Medicament admini	 Med Order 		Physician		- MUST EXIS	T _ sev	veral distinct
Medicament admini	 Med Order 		 Dose 		 MUST EXIS 	T 🗸 just	

PreCondition	Operation	ParentOperation	Operation Insp Responsible P	Result_Type
	Med Order	Med Administer	No	Value added
	Order Transcript	Med Order	Yes	Cost added
	Pharmacy Check	Order Transcript	Yes	Value added
Medicament available	Med Pick	Pharmacy Check	No	Value added
Medicament missing	Med Reorder	Pharmacy Check	Yes	Cost added
	Administer to patient	ToNurse Send	No	Value added
	Tray Fill	Med Pick	No	Value added
	Cart Load	Tray Fill	No	Cost added
	ToNurse Send	Cart Load	No	Value added
	Examine	Med Administer	Yes	Value added
	Specialized Examine	Med Administer	No	Value added
	Patient Supervise	Administer to patient	No	Value added
	Blood Examine	Patient Supervise	No	Value added
	Diet Prescript	Patient Supervise	No	Value added
Med Admir Med Admir	Diet Prescript Order Order Transcript E Pharmacy C E Med F	Patient Supervise Check Pick (Precondition: Tray Fill E- Cart Load E- ToNurs	No Medicament availa	Value add

<u>Compound sentence</u> representing ideas in a cause-effect diagram with objects and operations (with capital letters) in the <u>domain ontology</u> . It is an instance of the PQI object	xt
'Cause-Effect diagram'	
Current Domain: Medicament administration in hospital Current Object: Patient Target characteristic: Medicine_cost Main Cause(1) (1) many Physician Med Order many expensive Medicament Main Cause(1) (2) some Medicament is incompatible for some Patient SubCause(1) (3) AND Physician must Med Reorder Second Cause(1) (4) some Medicament is not found in Pharmacy SubCause(1) (5) AND Physician must Med Reorder SubCause(2) (1) some Treatment is ineffective to many Patient Second Cause(2) (2) AND many Medicament must Administer to patient without patient Second Cause(3) (1) some Treatment is ineffective to some Patient Main Cause(3) (1) some Treatment is ineffective to some Patient Second Cause(3) (2) OR some poor, old Patient cannot pay Main Cause(5) (1) many very sick Patient SubCause(5) (2) AND Physician must Patient Supervise every day Second Cause(5) (3) OR ineffective Treatment to some Patient Main Cause(6) (1) many Physician wish not Patient Supervise at home Second Cause(6) (2) AND all poor Patient cannot pay Negative/ positive effect: Too many complaints Main Cause(4) (1) some inefficient Physician Med Order inappropriate Main Cause(4) (2) OR some lazy Personnel Main Cause(4) (2) OR some thief Personnel	-
Benefits from ideas expression using ontology-based sentences:	
•users have a <u>common vocabulary</u> and are forced to focus on the <u>most relevant aspects and concept</u> domain and process.	ts in the
 ideas can be automatically compared and grouped (at least by matching concepts with same synta (subject, predicate, complement)). 	ctic role

	Dynamic cr of characteristic characteristic is 'm Current Doman: Curre	s desc	ribing the o			omain on	tology
Health care	Medicament administration Med	Administer		Patient			
Selected Attribute	Domain	Object Type	Data Type	Attribute Name	Attribute Description	Improvement Criterium	Target Va
	Medicament administration in hospital	Patient	▼ Date	✓ Month	Period the patients are	•	
	Medicament administration in hospital	Patient	✓ Decimal	✓ Temperature			
Γ	Medicament administration in hospital	Patient	Integer	 Days_in_hospital 		Minimize 🗸	
N	Medicament administration in hospital	Patient	✓ Decimal	 Medicine_cost 			
Γ	Medicament administration in hospital	Patient	Integer	✓ No_pills			
N	Medicament administration in hospital	Patient	✓ Text	 Hospital_department 			
Γ	Medicament administration in hospital	Patient	✓ Text	✓ Name			
Γ	Medicament administration in hospital	Patient	✓ Text	 Complaint_Type 			
	Medicament administration in hospital	Patient	Integer	 No_Complaints 			
Dynamic cr	20 11 13	et 78 Dep 94 Dep 37 Dep 89 Dep	lospital_depa 1 2 3 4		ain Object"		
2/28/2002 2/28/2002	19	78 Dep	2				
2/28/2002		'89 Dep: 186 Dep:					

Brainstorming Sessions
users express ideas (in NL or ontological sentences) on any subject and PQI step.
□ the ideas expressed by ontological sentences can be automatically grouped by matching concepts with same syntactic role (subject, predicate, complement), resulting into the <i>affinity diagram</i> .
Example of affinity diagram for the ideas in the cause-effect diagram
🔗 Asistent pentru reingineria proceselor prin TQM (BPR Assistant) - [AffinityDataTree : Form]
File Edit View Insert Tools Window Help
 Group: Independent idea Group: Same subject: No_Complaints Group: Same subject: Nedicament Group: Same subject: Patient, same predicate: pay Group: Same subject: Patient, same predicate: pay, same complement: Medicament Group: Same subject: Physician, same predicate: Med Order, same complement: Medicament Group: Same subject: Physician, same predicate: Med Reorder Group: Same subject: Physician, same predicate: Med Reorder Group: Same subject: Physician, same predicate: Med Reorder, same complement: Medicament Group: Same subject: Physician, same predicate: Med Reorder, same complement: Medicament Group: Same subject: Physician, same predicate: Patient Supervise Group: Same subject: Treatment
□ the members can express their vote on the final list of ideas and the mediator calls the <i>multivote</i> function, that automatically calculates the vote per idea (complex sentence) or sequence of idea (simple sentence).

Conclusions
 the developers of applications can <u>benefit from ontologies for</u> both: description of the <i>business</i> (e.g. 'medicament administration'), but also for description of the <i>applications</i> (e.g. a PQI system) and for their <i>interfaces</i>. Most part of the <i>code for the application interface can be reused</i> for other applications, by changing/ extending the application ontology.
the <u>use of a relational DB for the representation of the process-oriented ontologies</u> (i.e. for the composition of controlled sequence of operations, for the description of objects and operations in the process) was possible because of the <i>natural</i> <i>representation in relational DBs of the conceptual graphs</i> , the inspiration source for the ontology-based sentences;
benefits for PQI system from the proposed process-oriented representation:
conceptual integration of ontologies describing both PQI system and analyzed process, using the same types of concepts and a uniform representation for both ontologies.
It saves the user's <i>time for system learning</i> , because the same representation was for both user <i>interface</i> and the infrastructure for the analyzed <i>process</i> (defined by the user)
integration of operation/ process and object descriptions and of the semantic relationships between processes/ operations/ objects.
 most ontology languages do not have explicit representation capabilities for processes; symbolic models do not allow the explicit integration of processes and objects (they propose separate diagrams for objects and processe, integrated in the programming code);

